K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

a/ Ta có góc BDC=90 độ ( góc nt chăn nửa đường tròn)

suy ra góc ADH = 90 độ ( kề bù ) 

góc BEC= 90 độ ( góc nt chắn nửa đường tròn) 

suy ra góc AEH = 90 độ ( kề bù )

Tư giác ADHE có góc ADH + góc AEH = 90 độ + 90 độ = 180 độ 

Hại góc ở vị tri đối nhau . Do đó tứ giác ADHE nt đường tròn.

b/

c/Ta có góc BDC = 90 độ ( góc nt chắn nửa đt)

góc BEC = 90 độ ( góc nt chắn 1/2 đt)

Tứ giác BDEC có hai đỉnh kề D và E cùng nhìn BC dưới một góc vuông . Do đó tứ giác BDEC nt 

suy ra góc BDE + góc BCE = 180 độ      (1)

Mặt khác : góc ADE + góc BDE = 180 độ ( kề bù ) (2) 

(1) (2) suy ra góc ADE = góc ACB 

Xét tam giác ADE và tam giác ACB có 

goc BAC chung 

goc ADE = góc BAC (cmt)

suy ra tam giác ADE đồng dạng tam giác ACB (g.g)

nên AD/AC = AE/AB

hay AD.AB =AE.AC.

a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔADC

Suy ra: AE/AD=AB/AC

hay AE/AB=AD/AC

Xét ΔAED và ΔABC có

AE/AB=AD/AC

góc EAD chung

Do đó: ΔAED\(\sim\)ΔABC

Suy ra: AE/AB=ED/BC

hay \(AE\cdot BC=ED\cdot AB\)

b: Xét ΔBDC vuông tại D và ΔBFA vuông tại F có

góc FBA chung

Do đó: ΔBDC\(\sim\)ΔBFA
Suy ra: BD/BF=BC/BA

hay \(BD\cdot BA=BF\cdot BC\)

Xét ΔCEB vuông tại E và ΔCFA vuông tại F có

góc FCA chung

Do đó: ΔCEB\(\sim\)ΔCFA
Suy ra CE/CF=CB/CA

hay \(CE\cdot CA=CB\cdot CF\)

\(BD\cdot BA+CE\cdot CA=BF\cdot BC+CF\cdot BC=BC^2\)

a: góc BDC=góc BEC=90 độ

=>CD vuông góc AB, BE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

 

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm

18 tháng 3 2020

a) góc CEB là góc nội tiếp chắn nửa đường tròn

=> góc CEB =90 độ => góc BEA=90 độ (kb)

tam giác AEB có góc A=45 độ => tam giác AEB vuông cân =E

=> AE=EB

b) góc BDC là góc nội tiếp chắn nửa đường tròn 

=> góc BDC=90 độ => góc HDA=90 độ (kb) (1)

góc BEA=90 độ => góc HEA=90 độ (2)

từ (1),(2) => góc HDA + góc HEA=180 độ

=> tứ giác DAEH nội tiếp

=)))