Cac ban giup minh voi
1) Giai cac phuong trinh
a) 2010.(4x-3)-4x2+3=0
b)( x2-\(\frac{25}{4}\))2= 10x +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cac ban giup minh voi
1) Giai cac phuong trinh
a) 2010.(4x-3)-4x2+3=0
b)( x2-\(\frac{25}{4}\))2= 10x +1
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+2\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Rightarrow t^2+2t+2=0\Leftrightarrow\left(t+1\right)^2+1=0\)
Phương trình vô nghiệm
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
a)4x2+4x+1-x2-10x-25=0
`<=>(2x+1)^2-(x+5)^2=0`
`<=>(2x+1-x-5)(2x+1+x+5)=0`
`<=>(x-4)(3x+6)=0`
`<=>(x-4)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\)
b)(x^2+x+7)(x^2+x-7)=(x2+x)2-7x
`<=>(x^2+x)^2-7^2=(x^2+x)^2-7x`
`<=>-7^2=-7x`
`<=>-49=-7x`
`<=>x=7`
Vậy x=7
\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\\ \Leftrightarrow2x\cdot\left(4x+3\right)-15\cdot\left(6x-2\right)=35\cdot\left(5x+4\right)+315\\ \Leftrightarrow80x+63-90x+30=175x+140+315\\ \\\Leftrightarrow-6x+93=175x+455\\ \Leftrightarrow93=175x+455+6x\\ \Leftrightarrow93=181x+45\\ \Leftrightarrow-362=181x\\ \Rightarrow x=-\frac{362}{181}=-2\)
5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)
=> B\(\le\frac{9}{5}\)<=> x=-2/5
Tìm GTLN của: \(B=-5x^2-4x+1\)
Ta có
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)
Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).
Tìm GTLN của: \(C=-2x^2+10x+3\)
Ta có
\(C=-2x^2+10x+3\)
\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)
\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)
\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)
\(C=-2\left(x-\frac{5}{2}\right)^2+17\)
Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)
(x+1)/2011+1+(x+2)/2010+1+(x+3)/2009+1-((x+4)/2008+1+(x+5)/2007+1+(x+6)/2006+1)=0
(x+2012)/2011+(x+2012)/2010+(x+2012/2009-(x+2012)/2008-(x+2012)/2007-(x+2012)/2006=0
(x+2012)(1/2011+1/2010+1/2009-1/2008-1/2007-1/2006)=0
x+2012=0
x=-2012
=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]+2003
=(-1)+(-1)+...+(-1)+2003
=(-1)*1001+2003
=(-1001)+2003
=1002
=1-2+3-4+5-6+...+2001-2002+2003
=(-1)+(-1)+...+(-1)+2003
(1001 số hạng -1)
=(-1)1001+2003
=-1001+2003
=1002