Cho nửa đường tròn $(O)$ đường kính $AB$. $M$ là điểm tùy ý trên nửa đường tròn ($M$ khác $A$ và $B$). Kẻ \(MH\perp AB\) \(\left(H\in AB\right)\). Trên cùng nửa mặt phẳng bờ $AB$ chứa nửa đường tròn $(O)$, vẽ hai nửa đường tròn tâm \(O_1\) đường kính $AH$ và tâm \(O_2\) đường kính $BH$. $MA$ và $MB$ cắt hai nửa đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\) lần lượt tại $P$ và $Q$.
a) Chứng minh rằng $MH = PQ$.
b) Chứng minh tứ giác $PQBA$ nội tiếp.
c) Chứng minh $PQ$ là tiếp tuyến chung của hai nửa đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của O 2
Tương tự PQ cũng là tiếp tuyến ( O 1 )
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: CM+MD=CD
mà CM=CA
và DM=DB
nên CD=CA+DB
a: Sửa đề: OE\(\perp\)AN
Xét tứ giác OBME có \(\widehat{OBM}+\widehat{OEM}=90^0+90^0=180^0\)
=>OBME là tứ giác nội tiếp
=>O,B,M,E cùng thuộc một đường tròn
b: Ta có: ΔOAN cân tại O
mà OE là đường cao
nên OE là phân giác của góc AON
=>OK là phân giác của góc AON
Xét ΔONK và ΔOAK có
ON=OA
\(\widehat{NOK}=\widehat{AOK}\)
OK chung
Do đó: ΔONK=ΔOAK
=>\(\widehat{OAK}=\widehat{ONK}\)
mà \(\widehat{ONK}=90^0\)
nên \(\widehat{OAK}=90^0\)
=>KA là tiếp tuyến của (O)
a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.
Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ⌢), do đó APQB là tứ giác nội tiếp.
c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90o−HMP=90o−MPQ
\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o⇒O1PA+MPQ=90o⇒O1PQ=90o nên PQ tiếp xúc nửa đường tròn (O1) tại P.
Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)