cho tam giác abc vẽ hai đường trung tuyến be và cf cắt nhau tại ggoij m ,n lần lượt là trung điểm của gb và gc cmr tứ giác bmnc là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik vẽ là B bên trái và C bên phải nha
Ta có BE là đường trung tuyến => B1 = B2
Tương tự C1 = C2
Ta có M , N là trung điểm của GB và GC => MN là đừng trung bình của tam giác GBC
=> MN // BC => MNCB là hình thang ( 1 )
Ta có : B1 = B2 ; C1 = C2
Mà B = C
=> B2 = C2 ( 2 )
Từ ( 1) và ( 2 ) => MNCB là hình thang cân
T nha các bạn
Đề sai rồi bạn ơi:
Nếu tam giác ABC là tam giác bất kì thì trường
hợp hình thang BMNC là cân ko thể xảy ra.
MIK vẽ hình rồi
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang
Xét ΔABC có AN/AB=AM/AC=1/2
nên NM//BC và NM=1/2BC(1)
Xét ΔGBC có GP/GB=GQ/GC=1/2
nên PQ//BC và PQ=BC/2(2)
Từ (1), (2) suy ra NM//PQ và NM=PQ
=>MNPQ là hình bình hành
Bài 1:
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra NM//IK và NM=IK
Bắt chước Geogebra để vẽ hình trên olm:
a) Dễ thấy MN là đường trung bình tam giác GBC nên MN // BC. Do đó tứ giác MNCB là hình thang.(mình nghĩ đề là chứng minh MNCB là hình thang cân chứ? Cho nó phức tạp xíu:D)
b) Từ đề bài ta có ngay DE là đường trung bình tam giác ABC nên DE // BC. Kết hợp MN // BC suy ra MN // DE.
*Chứng minh EM // DM: Mình thấy nó hơi sai sai ở cái đề.
c) Đề có sai hem?