Nếu x=2 thỏa mãn phương trình px + q=91 và p - q=2, giá trị của pq là gì? (giải chi tiết)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`[2-x]/[x+3] > x+1` `ĐK: x \ne -3`
`=>` Loại đ/á `\bb A`
Thay `x=-1` vào bất ptr có: `1,5 > 0` (Luôn đúng) `->\bb B` t/m
Thay `x=2` vào bất ptr có: `0 > 3` (Vô lí) `->\bb C` loại
Thay `x=0` vào bất ptr có: `2/3 > 1` (Vô lí) `->\bb D` loại
______________________________________________________
`=>` Chọn `\bb B`
\(x^2-2x+m=0\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4m=4-4m\)
Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4-4m>0\Leftrightarrow-4m>-4\Leftrightarrow m< 1\)
Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
Ta có : \(2\left(x_1x_2\right)^2-x_1=6+x_2\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-x_1-x_2-6=0\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)-6=0\)
\(\Leftrightarrow2m^2-2-6=0\)
\(\Leftrightarrow2m^2=8\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Vậy \(m=-2\) thì thỏa mãn đê bài.
Giải thích giúp em chỗ dấu tương tương thứ hai tại sao x1-x2 lại chuyển thành (x1+x2) được không ạ
1a) \(Q=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q nguyên \(\Leftrightarrow\frac{3}{12-x}\inℤ\)
\(\Leftrightarrow12-x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{13;11;15;9\right\}\)
1b) Bạn tự thay từng giá trị của x vừa tìm được ở câu a) vào rồi tính y nhé :
Ta có :\(11x+18y=120\)(1)
VD: Thay \(x=13\)vào (1), ta được :
\(11\cdot13+18y=120\)\(\Leftrightarrow y=\frac{57}{18}\)
2) Ta có : \(\left(x-45\right)^2\ge0,\forall x\)
\(-\left|2y-5\right|\le0,\forall y\)
Dấu "=" xảy ra khi và chỉ khi :\(\left(x-45\right)^2=-\left|2y-5\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-45=0\\2y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=45\\y=\frac{5}{2}\end{cases}}\)
Thay x = 45 ; y = 5/2 vào biểu thức M ta được:
\(M=45^2+\left(\frac{5}{2}\right)^2+\frac{29}{10}\cdot\frac{5}{2}-9\)
\(M=2029,5\)
Theo đề bài ta có: 2p+q=91 (*) và q=p-2
Thay q=p-2 vào (*) ta được:
\(2p+p-2=91\)
\(\Leftrightarrow3p-2=91\)
\(\Leftrightarrow p=\frac{91+2}{3}=31\)
\(\Rightarrow q=p-2=31-2=29\)
\(\Rightarrow pq=31\times29=899\)