x+3/x-3+48x^2/9-x^2=x-3/x+3
giải phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)
\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(-\dfrac{1}{2}x+6< 0\Leftrightarrow-\dfrac{1}{2}x< -6\Leftrightarrow\cdot\dfrac{1}{2}x>6\Leftrightarrow x>12\)
(sai thì thoi nha)
\(-\dfrac{1}{2}x+6< 0\)
\(\Leftrightarrow-\dfrac{1}{2}x< -6\)
\(\Leftrightarrow x>\left(-6\right):\left(-\dfrac{1}{2}\right)\)
\(\Leftrightarrow x>12\)
--> Chọn A
Lời giải:
b.
$\frac{2x}{3}=8$
$\Leftrightarrow 2x=3.8=24$
$\Leftrightarrow x=24:2=12$
d.
$\frac{6}{5}x=-9$
$\Leftrightarrow x=-9: \frac{6}{5}=\frac{-15}{2}$
f.
$\frac{2-3x}{4}=\frac{4x-5}{5}$
$\Leftrightarrow 5(2-3x)=4(4x-5)$
$\Leftrightarrow 10-15x=16x-20$
$\Leftrightarrow 30=31x$
$\Leftrightarrow x=\frac{30}{31}$
h.
$\frac{10-3x}{2}=\frac{6x+1}{3}$
$\Leftrightarrow 3(10-3x)=2(6x+1)$
$\Leftrightarrow 30-9x=12x+2$
$\Leftrightarrow 28=21x$
$\Leftrightarrow x=\frac{28}{21}=\frac{4}{3}$
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
a) (4x-5)^2 -4 (x-2)^2 =0
⇔(4x-5)2-[2(x-2)]2=0
⇔(4x-5)2-(2x-4)2=0
⇔(4x-5-2x+4)(4x-5+2x-4)=0
⇔(2x-1)(6x-9)=0
⇔\(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}2x=1\\6x=9\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)
đặt\(\sqrt{x+6}=a;x^2+4x=b\)
a/ Điều kiện b tự làm nhé
Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)
Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành
\(a-b=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)
Tới đây thì đơn giản rồi b làm tiếp nhé
\(\Leftrightarrow\left(x+3\right)^2-48x^2=\left(x-3\right)^2\)
\(\Leftrightarrow48x^2=x^2+6x+9-x^2+6x-9\)
\(\Leftrightarrow48x^2-12x=0\)
=>12x(4x-1)=0
=>x=0(nhận) hoặc x=1/4(nhận)