Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)
b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**
Kl: x \< 5/2
c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)
Kl: x=-2/3, x=1
d) Đk: x >/ 1
\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)
Kl: x=2
e) Đk: x >/ 1
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)
kl: x >/ 1
f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)
(luôn đúng)
Kl: x \< 1/4
Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!
2.
a) \(\sqrt{4\left(1-x\right)^2}-12=0\)
\(\Leftrightarrow\sqrt{4}.\sqrt{\left(1-x\right)^2}-12=0\)
\(\Leftrightarrow2.\left|1-x\right|-12=0\) (1)
TH1: \(1-x\ge0\Leftrightarrow x\le1\)
(1) \(\Leftrightarrow2\left(1-x\right)-12=0\)
\(\Leftrightarrow2-2x-12=0\)
\(\Leftrightarrow-10-2x=0\)
\(\Leftrightarrow-2x=10\)
\(\Leftrightarrow x=-5\left(TMĐK\right)\)
TH2: \(1-x< 0\Leftrightarrow x>0\)
(1) \(\Leftrightarrow2\left(x-1\right)-12=0\)
\(\Leftrightarrow2x-2-12=0\)
\(\Leftrightarrow2x-14=0\)
\(\Leftrightarrow2x=14\)
\(\Leftrightarrow x=7\left(TMĐK\right)\)
Vậy phương trình có tập nghiệm: \(S=\left\{7;-5\right\}\)
2.
b) \(\sqrt{4x^2-12x+9}=5\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=5\)
\(\Leftrightarrow\left|2x-3\right|=5\)
TH1: \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
\(\Leftrightarrow2x-3=5\Leftrightarrow x=4\left(TMĐK\right)\)
TH2: \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(\Leftrightarrow3-2x=5\Leftrightarrow x=-1\left(TMĐK\right)\)
Vậy phương trình có tập nghiệm là: \(S=\left\{-1;4\right\}\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)