Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu :
a) x^2+2x+1
b) 9x^2+y^2+6xy
c) 25a^2+4b^2-20ab
d) x^2-x+1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
Câu d thì biểu thức là \(\frac{x^2-1}{2x+\frac{1}{10}}\) hay là \(\frac{x^2-1}{\frac{2x+1}{10}}\) z bạn???
a) x2 + 2x + 1 = x2 + 2.x.1+ 12 = ( x + 1)2
b) 9x2 + y2 + 6xy = (3x)2 + 2.3.x.y + y2 = (3x + y)2
c) 25a2 + 4b2 – 20ab = (5a)2 – 2.5.a.2b. + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a. + (5a)2 = (2b – 5a)2
d) x2 – x + \(\dfrac{1}{4}\) = x2 – 2.x. \(\dfrac{1}{2}\) + ( \(\dfrac{1}{2}\))22 = ( x - \(\dfrac{1}{2}\) )2
Hoặc x2 – x + \(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) - x + x2 = (\(\dfrac{1}{2}\))2 – 2. \(\dfrac{1}{2}\).x + x2 = (\(\dfrac{1}{2}\) - x)2
a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2
d) x2 – x + 1414 = x2 – 2 . x . 1212 + (12)2(12)2= (x−12)2(x−12)2
Hoặc x2 – x + 1414 = 1414 - x + x2 = (12)2(12)2 - 2 . 1212 . x + x2 = (12−x)2
a) x2 + 2x +1
= (x + 1)2
b) 9x2 + y2 + 6xy
= (3x + y)2
c) 25a2 + 4b2 - 20ab
= (5a - 2b)2
d) x2 - x + 1/4
= (x - 1/2)2
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
d) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
bạn có thể giải thích bằng lời đẻ ôi hiểu rõ hơn có được hay ko
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
A)\(1-2x+x^2\)
\(=\left(1-x\right)^2\)
B)\(4y+4+y^2\)
\(=2^2+4y+y^2\)
\(=\left(2+y\right)^2\)
C)\(\frac{1}{16}+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}\right)^2+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}+x\right)\)
D)\(36x^2+12xy+y^2\)
\(=\left(6x+y\right)^2\)
a)\(x^2+2x+1=x^2+2x1+1^2=\left(x+1\right)^2\)
b)\(9x^2+y^2+6xy=3^2x^2+y^2+2.3x.y=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
c)\(25a^2+4b^2-20ab=5^2a^2+2^2b^2-2.5a.2b=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
d)\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)