Cho tam giác ABC vuông tại A. Chứng minh : góc B = 60 độ <=> \(\frac{AC}{AB}=\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: B=\(\alpha\) mà \(\frac{AC}{AB}=\sqrt{3}\)→\(\tan\alpha=\sqrt{3}\)
lại có: 1+ tan2\(\alpha\)=\(\frac{1}{\cos^2\alpha}\)→cos2\(\alpha\)=\(\frac{1}{4}\)→cos \(\alpha\)=\(\frac{1}{2}\)hay \(\frac{AB}{BC}=\frac{1}{2}\)
→ C=30o(Δ vuông có 1 cạnh góc vuông = 1/2 cạnh huyền)
do đó B=600
a, xét tam giác ABD và tam giác EBD có : BD chung
^ABD = ^EBD do BD là pg của ^ABC (gt)
^BAD = ^BED = 90
=> tam giác ABD = tam giác EBD (ch-gn)
b, tam giác ABD = tam giác EBD (Câu a)
=> AB = BE (Đn)
=> tam giác ABE cân tại B (đn)
mà ^ABE = 60 (gt)
=> tam giác ABE đều (dh)
c, tam giác ABC vuông tại A (gt) => ^ACB = 90 - ^ABC (đl)
^ABC = 60 (Gt)
=> ^ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2
AB = 5 cm (GT)
=> BC = 10
tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2
AB = 5; BC = 10
=> AC^2 = 10^2 - 5^2
=> AC^2 = 75
=> AC = \(\sqrt{75}\) do AC > 0
A)XÉT \(\Delta ABD\)VUÔNG VÀ \(\Delta EBD\)VUÔNG CÓ
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
BD LÀ CẠNH CHUNG
\(\Rightarrow\Delta ABD=\Delta EBD\left(CH-GN\right)\)
B) TA CÓ \(\Delta ABD=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AB=EB\)(HAI CẠNH TƯƠNG ỨNG)
NÊN \(\Delta ABE\)CÂN TẠI B
C) XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
THAY\(\widehat{90}+\widehat{60}+\widehat{C}=180\)
\(\Rightarrow\widehat{C}=30\)
MÀ TRONG TAM GIÁC VUÔNG , CẠNH ĐỐI DIỆN VỚI GÓC 30 ĐỘ BẰNG NỬA CẠNH HUYỀN(Đ/L)
\(\Rightarrow2AB=BC\)
THAY\(2.5=BC=10\left(cm\right)\)
XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\left(Đ/LPY-TA-GO\right)\)
THAY\(10^2=5^2+AC^2\)
\(100=25+AC^2\)
\(\Rightarrow AC^2=100-25\)
\(\Rightarrow AC^2=75\)
\(\Rightarrow AC=\sqrt{75}=5\sqrt{3}\)
Ta có AB=\(\frac{1}{2}\) BC =>BC = 2 AB. Tam giác ABC vuông tại A nên
AB2 + AC2 = BC2
AB2+ AC2 =(2AB)
AB2+AC2 =4AB2
AC2 = 4AB2 -AB2
AC2 = 3AB2
=> AC = \(\sqrt{3}\)AB
1) Chứng minh: ΔABD = ΔEBD
Xét ΔABD và ΔEBD, có:
BD là cạnh huyền chung (gt)
Vậy ΔABD = ΔEBD (cạnh huyền – góc nhọn)
2) Chứng minh: ΔABE là tam giác đều.
ΔABD = ΔEBD (cmt)
AB = BE
mà góc B = 60 độ (gt)
Vậy ΔABE có AB = BE và góc 60 độ nên ΔABE đều.
3) Tính độ dài cạnh BC
Ta có (gt)
Góc C+B = 90 độ(ΔABC vuông tại A)
Mà BEA = góc B = 60 độ (ΔABE đều)
Nên góc EAC = góc C ΔAEC cân tại E
EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
Dùng kiến thức hình học 7 để chứng minh bài này như sau: Gọi AM là đứng trung tuyến ứng với cạnh huyền BC của tam giác vuông ABC ta có : AM = MB = MC = BC/2
Tam giác AMB có : MA = MB => tam giác AMB cân tại M. ta lại có góc B = 60 độ. => tam giác AMB đều
=> AB = MB = BC/2 (1 )
Áp dụng định lí Pytago cho tam giác vuông ABC ta có : \(AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{BC^2-\frac{BC^2}{4}}=\frac{BC\sqrt{3}}{2}.\)((2)
Từ (1) và (2 ) suy ra : \(\frac{AC}{AB}=\sqrt{3}\)
Chứng minh điều ngược lại: vì \(\frac{AC}{AB}=\sqrt{3}\Rightarrow AC=AB\sqrt{3}\)
Áp dụng định lí Pytago cho tam giác vuông ABC được : \(BC=\sqrt{AC^2+AB^2}=\sqrt{4AB^2}=2AB.\)
=> AB = BC/2 (3)
AM là đường trung tuyến ứng với cạnh huyền BC nên AM = MB = BC/2 (4)
Từ (3) và (4) => AB = AM = MB => tam giác AMB đều => góc B = 60 độ ( đpcm )