K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2022

a.

- Với \(y=1\) vế trái hữu tỉ, vế phải vô tỉ (ktm)

- Với \(y\ge4\Rightarrow y!=8k\Rightarrow\left(\sqrt{3}\right)^y=\left(\sqrt{3}\right)^{8k}=81^k\equiv1\left(mod10\right)\)

Mà \(6^x\equiv6\left(mod10\right)\) ; \(11^x\equiv1\left(mod10\right)\Rightarrow10+11^x+6^x\equiv7\left(mod10\right)\)

\(\Rightarrow\) Pt vô nghiệm

- Với \(y=2\Rightarrow\left(\sqrt{3}\right)^y=3\equiv3\left(mod10\right)\) (vô nghiệm do \(VT\equiv7\left(mod10\right)\) theo cmt)

- Với \(y=3\Rightarrow10+11^x+6^x=27\) 

\(\Rightarrow11^x+6^x=17\Rightarrow x=1\)

Vậy \(\left(x;y\right)=\left(1;3\right)\)

NV
4 tháng 3 2022

b.

Với \(x\ge4\Rightarrow x!=8k\Rightarrow2^{x!}=2^{8k}=256^k\equiv6\left(mod10\right)\)

Và \(6^y\equiv6\left(mod10\right)\Rightarrow2^{x!}+6^y\equiv12\left(mod10\right)\Rightarrow\) vế trái ko chia hết cho 10 trong khi VP chia hết cho 10 (loại)

Với \(x=1\Rightarrow2+6^y\equiv8\left(mod10\right)\Rightarrow\)  vô nghiệm

Với \(x=2\Rightarrow4+6^y=10^y\Rightarrow y=1\)

Với \(x=3\Rightarrow64+6^y=10^y\Rightarrow y=2\)

Vậy \(\left(x;y\right)=\left(2;1\right);\left(3;2\right)\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)