CE là tia phân giác của tam giác DCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét \(\Delta AEC\) và \(\Delta ADB\) có :
AB = AC ( gt )
\(\widehat{A}\) : góc chung
\(\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\)
do đó \(\Delta AEC=\Delta ADB\) ( chạnh huyền - góc nhọn )
\(\Rightarrow CE=BD\) ( 2 cạnh tưng ứng )
b. Có AE = AD ( 2 cạnh tương ứng của \(\Delta AEC=\Delta ADB\) ) ; AB = AC ( gt )
mà AB = AE + EB ( E thuộc AB ) ; AC = AD +DC ( D thuộc AC )
\(\Rightarrow EB=DC\)
Xét \(\Delta EHB\) và \(\Delta DHC\) có :
EB = DC ( cmt )
\(\widehat{EHB}=\widehat{DHC}\) ( 2 góc đối đỉnh )
\(\widehat{BEH}=\widehat{CHD}\left(=90^o\right)\)
do đó \(\Delta EHB=\Delta DHC\) ( cạnh góc vuông - góc nhọn )
c. Xét \(\Delta ABC\) có :
\(CE\perp AB;BD\perp AC\left(gt\right)\)
suy ra H là trực tâm của \(\Delta ABC\)
hay AH là đường cao thứ 3 của tam giác ABC ( t/c trực tâm )
mà tam giác ABC là tam giác cân ( AB =AC )
nên AH là đường cao đồng thời là phân giác của tam giác ABC ( trong tam giác cân ..... )
\(\Rightarrow\) AH là tia phân giác góc \(\widehat{BAC}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng
a) t/g AHC vuông tại H có: ACH + CAH = 90o (1)
t/g AHB vuông tại H có: ABH + BAH = 90o (2)
Từ (1) và (2) lại có: ACH = ABH (gt) suy ra CAH = BAH
t/g ACH = t/g ABH ( cạnh góc vuông và góc nhọn kề)
=> AC = AB (2 cạnh tương ứng) (đpcm)
b) t/g ACH = t/g ABH (cmt)
=> ACH = ABH (2 góc tương ứng)
Lại có: ACH + ACE = ABH + ABD = 180o
=> ACE = ABD
t/g ACE = t/g ABD (c.g.c) (đpcm)
c) Có: EC = BD (gt)
=> EC + BC = BD + BC
=> BE = CD
t/g ACD = t/g ABE (c.g.c) (đpcm)
d) t/g ACH = t/g ABH (câu a)
=> CH = BH (2 cạnh tương ứng)
Mà: CE = BD (gt)
Nên CH + CE = BH + BD
=> HE = HD
t/g AHE = t/g AHD (2 cạnh góc vuông)
=> EAH = DAH (2 góc tương ứng)
=> AH là phân giác DAE (đpcm)
a,xét tam giác ACH và tam giác DCH có:
HA=HD(gt)
góc CHA= góc CHD(vì CH\(\perp\)AD)
HC chung => tam giác ACH=tam giác DCH(c.g.c)
tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C
b,xét tam giác AHB và tam giác DHE có:
góc BHA= góc DHE( đối đỉnh)
HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)
gọi giao điểm DE với AC là K
vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA
mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK
lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)
hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC
ăn cơm đã ý c tí mik làm sau
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
CB chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔHBC có góc HCB=góc HBC
nên ΔHBC cân tại H
c: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH làphân giác của góc BAC
Xét \(\Delta DCH\) có : CE là phân giác của \(\widehat{DCH}\)
=>\(\dfrac{DE}{CD}=\dfrac{EH}{CH}\Leftrightarrow\dfrac{3}{6}=\dfrac{4}{CH}\Leftrightarrow\dfrac{4}{CH}=\dfrac{1}{2}\Leftrightarrow CH=8\)