cho 2 đg thẳng xy và ab cắt nhau tại O. Gọi Om là pg của góc xOa, On là tia đối của Om, chứng tỏ On là pg của góc bOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc AOC + COB = 180đ ( kề bù )
Có AOC = DOB và vì OM , ON là tia phân giác 2 góc này nên MOC = NOB
=> MOC + NOB = AOC ( * )
Có MOC + NOB + COB mà từ ( * ) => MOC + COB + NOB = AOC + COB và = 180o
2 tia OM và ON có chung điểm O và tạo với nhau một góc = 180o
=> OM và ON là 2 tia đối nhau
ta có : 2 đường thẳng AB và CD cách nhau tại O sẽ tạo ra các góc đối đỉnh
=>AOC=BOD [2 góc đối dỉnh]
TA CÓ: OM và ON lần lượt là tia phân giác của AOC ,BOD
Suy ra OM và ON là 2 tia đối nhau
Toán ôn rồi Ko làm thì lượn đi.
a.sử dụng 2 góc đối đỉnh và 2 góc kề bù
b Dễ thấy:
\(\widehat{nOx}+\widehat{xOy'}+\widehat{y'Om}=30^0+120^0+30^0=180^0\) là góc bẹt
=> 2 tia đối nhau
hình vẽ :
bài giải :
a, vì góc x'Oy' là góc đối đỉnh, mà góc xOy = 60o nên x'Oy' = 60o .
Góc xOy và góc xOy' là 2 góc kề bù nên xOy + xOy' = 180o hay 60o + xOy' = 1800
do đó xOy' = 1800 - 600 = 1200
Góc xOy' là góc đối đỉnh với xOy' nên xOy' = x'Oy' = 1200
b, Om, On theo thứ tự là các tia phân giác của 2 góc xOy và xOy' nên :
\(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\) và \(\widehat{nOy'}=\frac{1}{2}\widehat{x'Oy'}\)
mà xOy = x'Oy' => xOm = mOy = nOx' = nOy' = \(\frac{1}{2}\widehat{xOy}\)
Ta có : xOm = nOy' = y'Ox =xOm = y'Ox + xOm + mOy = y'Ox + xOy = 180o
Góc mOn là góc bét , vì thế hai tia Om và On là 2 tia đối nhau