Cho tam giác ABC cân tại C. \(AM\perp BC\) tại M, \(BN\perp AC\) tại N. Gọi giao điểm AM và BN là K. Chứng minh rằng tam giác CAM=tam giác CBN và CK là tia phân giác góc ACB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA
a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
1: Xét ΔCAM vuông tại M và ΔCBN vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCAM=ΔCBN
Suy ra: CM=CN; AM=BN
Xét ΔCNK vuông tại N và ΔCMK vuông tại M có
CN=CM
CK chung
Do đó: ΔCNK=ΔCMK
Suy ra: \(\widehat{NCK}=\widehat{MCK}\)
hay CK là tia phân giác của góc ACB
2: Xét ΔCAB có CN/CA=CM/CB
nên MN//AB
3: AB=10cm
nên AD=DB=5cm
\(CD=\sqrt{12^2-5^2}=\sqrt{119}\left(cm\right)\)
a: Xẻt ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
1) Xét \(\Delta CAM\) vuông tại M và \(\Delta CBN\) vuông tại N:
\(\widehat{C}chung.\)
\(AC=BC\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\Delta CAM=\) \(\Delta CBN\left(ch-gn\right).\)
Xét \(\Delta ABC\) cân tại C:
BN là đường cao \(\left(BN\perp AC\right).\)
AM là đường cao \(\left(AM\perp BC\right).\)
K là giao điểm của AM; BN (gt).
\(\Rightarrow\) K là trực tâm.
\(\Rightarrow\) CK là đường cao từ đỉnh C.
\(\Rightarrow\) CK là tia phân giác \(\widehat{ACB}\) (Tính chất tam giác cân).
2) \(\Delta CAM=\) \(\Delta CBN\left(cmt\right).\)
\(\Rightarrow CM=CN\) (2 cạnh tương ứng).
\(\Rightarrow\) \(\Delta CNM\) cân tại C.
\(\Rightarrow\) \(\widehat{CNM}=\dfrac{180^o-\widehat{C}}{2}.\)
Mà \(\widehat{CAB}=\dfrac{180^o-\widehat{C}}{2}\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\widehat{CNM}=\widehat{CAB}.\)
\(\Rightarrow MN//AB\left(dhnb\right).\)
3) Xét \(\Delta ABC\) cân tại C:
CD là đường cao (cmt).
\(\Rightarrow\) CD là đường trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) D là trung điểm của AB.
\(\Rightarrow\) \(AD=\dfrac{1}{2}AB=\dfrac{1}{2}10=5\left(cm\right).\)
Xét \(\Delta ACD\) vuông tại D:
\(AC^2=CD^2+AD^2\left(Pytago\right).\\ \Rightarrow12^2=CD^2+5^2.\\ \Rightarrow CD^2=119.\\ \Rightarrow CD=\sqrt{119}\left(cm\right).\)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=góc HCB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC can tại I
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên KH//BC