Cho tam giác ABC vuông tại A. Biết BC=41cm, AC=40cm.Tính
a) Độ dài cạnh AB
b) Tính chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A. Biết BC=41cm, AC=40cm.Tính
a) Độ dài cạnh AB
b) Tính chu vi tam giác ABC
a: \(BC=\sqrt{41^2-40^2}=9\left(cm\right)\)
b: C=AB+BC+AC=41+40+9=90(cm)
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
a) Áp dụng định lí Pytago vào ΔAEC vuông tại E, ta được:
\(AC^2=AE^2+EC^2\)
\(\Leftrightarrow EC^2=AC^2-AE^2=5^2-4^2=9\)
hay EC=3(cm)
Vậy: EC=3cm
Ta có: BE+EC=BC(E nằm giữa B và C)
nên BE=BC-EC=9-3=6(cm)
Vậy: BE=6cm
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta được:
\(AB^2=AE^2+BE^2\)
\(\Leftrightarrow AB^2=6^2+4^2=52\)
hay \(AB=2\sqrt{13}cm\)
Vậy: \(AB=2\sqrt{13}cm\)
b) Chu vi của tam giác ABC là:
\(AB+AC+BC=2\sqrt{13}+5+9=14+2\sqrt{13}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
a: Ta có: \(AB+AC+BC=120\)
\(\Leftrightarrow AB+AC=70\)
mà AB-AC=10
nên AC=40dm; AB=30dm
b: Diện tích là:
\(S=AB\cdot AC=40\cdot30=1200\left(dm^2\right)\)
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
AC=AB.AB+BC.BC
=6.6+10.10
=36+100
=136
=11.6
Chu vi tam giác= AB=AC=BC=6+10+11=27
(Ko biết có làm đúng ko)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=9cm\)
b, Chu vi tam giác là AB + AC + BC = 90 cm
Trong \(\Delta ABC\) vuông tại A có :
\(\Rightarrow AB^2=BC^2-AC^2\) ( định lý Py-ta-go)
\(\Leftrightarrow AB^2=41^2-40^2\)
\(\Leftrightarrow AB^2=1681-1600\)
\(\Leftrightarrow AB^2=81\)
\(\Rightarrow AB=9\left(cm;AB>0\right)\)
Vậy AB = 9cm