giải phương trình: x2+1/x+ x/ x2+1= 5/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)

a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)
Lập bảng xét dấu
Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)
b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)
\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)
Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)

Giả sử pt đã cho có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2k}{k-1}\\x_1x_2=\frac{k-4}{k-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x_1+x_2\right)=\frac{6k}{k-1}\\2x_1x_2=\frac{2k-8}{k-1}\end{matrix}\right.\)
\(\Rightarrow3\left(x_1+x_2\right)+2x_1x_2=\frac{8\left(k-1\right)}{k-1}=8\)
\(\Leftrightarrow3\left(x_1+x_2\right)+2x_1x_2=8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Giúp mik bài tiếp theo ở trang cá nhân của mình nha

a) Thay m = -4 vào phương trình, ta có:
\(x^2+5x-6=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)
KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4
b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)
Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)
Để \(x_1^2+x^2_2-2x_1=25+2x_2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)
<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)
<=> \(25-2m+4+10-25=0\)
<=> 2m = 14
<=> m = 7 (Tm)
Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)

\(\Delta=\frac{1}{4}-4m^2\ge0\Rightarrow x^2\le\frac{1}{16}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{2}\\x_1x_2=m^2\end{matrix}\right.\)
\(P=x_1^3+x_1+x_2^3+x_2=\left(x_1^3+x_2^3\right)+x_1+x_2\)
\(P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1+x_2\)
\(P=-\frac{1}{8}+\frac{3}{2}m^2-\frac{1}{2}=\frac{3}{2}m^2-\frac{5}{8}\le\frac{3}{2}.\frac{1}{16}-\frac{5}{8}=-\frac{17}{32}\)
\(P_{max}=-\frac{17}{32}\) khi \(m=\pm\frac{1}{4}\)


chả biết nx, sao t giải nháp nhanh nó tìm ra m nhưng ko thoả đk, chắc sai r
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) (*)
ta có: \(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\)
=\(m^2-2m+1-m^2+m+2=3-m\)
để phương trình có nghiệm thì: \(\Delta'\ge0\Leftrightarrow m\le3\)
theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}\\x_1.x_2=\frac{c}{a}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m+1}\left(1\right)\\x_1.x_2=\frac{m-2}{m+1}\left(2\right)\end{matrix}\right.\)
theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=\frac{7}{4}\)
\(\Leftrightarrow4.\left(x_1+x_2\right)=7.x_1.x_2\left(3\right)\)
từ (1) ;(2) và (3) ta có : \(\frac{8\left(m-1\right)}{m+1}-\frac{7\left(m-2\right)}{m+1}=0\)
\(\Leftrightarrow\frac{m+6}{m+1}=0\Leftrightarrow m=-6\left(tm\right)\)
vì m+1 khác 0
vậy m=-6

thỏa mãn cái biểu thức á bạn, chỗ \(x_2\) ( trước dấu "=" ) có mũ 2 không?
Theo đề là Ko bạn ạ. Thế nên mình mới nhờ các bạn giúp ạ
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
ĐKXĐ : x khác 0
<=> \(\frac{\left(x^2+1\right)^2}{x\left(x^2+1\right)}+\frac{x^2}{x\left(x^2+1\right)}=\frac{5}{2}\)
<=> \(\frac{x^4+3x^2+1}{x^3+x}=\frac{5}{2}\)
=> 2x4 + 6x2 + 2 = 5x3 + 5x
<=> 2x4 - 5x3 + 6x2 - 5x + 2 = 0
<=> 2x4 - 4x3 - x3 + 2x2 + 2x2 + 2x2 - 4x - x + 2 = 0
<=> ( 2x4 - 4x3 + 2x2 ) - ( x3 - 2x2 + x ) + ( 2x2 - 4x + 2 ) = 0
<=> 2x2( x2 - 2x + 1 ) - x( x2 - 2x + 1 ) + 2( x2 - 2x + 1 ) = 0
<=> ( x - 1 )2( 2x2 - x + 2 ) = 0
Vì 2x2 - x + 2 > 0 ( bạn tự chứng minh )
=> x - 1 = 0 <=> x = 1 (tm)
Vậy ...