Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
a) để pt có nghiệm <=> đen ta phẩy >= 0
<=> (-(m-1))2 - 1(-3m+m2) >= 0
<=> (m-1)2 +3m-m2 >= 0
<=> m2-2m+1+3m-m2 >= 0
<=> m+1 >= 0
<=> m >= -1
vậy khi m >= -1 thì pt có nghiệm
b) khi m >= -1 thì pt có nghiệm ( theo a)
theo vi-ét ta có: x1+x2 = 2(m-1) (1)
x1.x2 = -3m + m2 (2)
theo đầu bài ta có: x12 + x22=16
<=> x12+ 2x1x2+ x22 -2x1x2= 16
<=> (x1+x2)2 -2x1x2 = 16 (3)
thay (1) và (2) và (3) rồi tính m.
kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4
\(\Delta=25-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm pb khi m =< 33/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)
Thay vào ta được : \(\dfrac{-7}{m-2+5+1}=2\Leftrightarrow\dfrac{-7}{m+4}=2\Rightarrow-7=2m+8\Leftrightarrow m=-\dfrac{15}{2}\)(tm)
\(Pt:x^2+5x+m-2=0.có.2.nghiệm.phân.biệt\\ x_1,x_2\ne1\\ \Leftrightarrow\left\{{}\begin{matrix}\Delta=5^2-4\left(m-2\right)=33-4m>0\\1^2+5.1+m-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m\ne-4\end{matrix}\right.\)
Theo định lí Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\\ Từ.giả.thiết:\\ \dfrac{ 1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Rightarrow x_2-1+x_1-1=2\left(x_1-1\right)\left(x_2-1\right)\\ \Leftrightarrow\left(x_1+x_2\right)-2=2\left[x_1x_2-\left(x_1+x_2\right)+1\right]\\ \Leftrightarrow-5-2=2\left(m-2+5+1\right)\Leftrightarrow-7=2\left(m+4\right)\\ \Rightarrow m=\dfrac{-15}{2}\)
chả biết nx, sao t giải nháp nhanh nó tìm ra m nhưng ko thoả đk, chắc sai r
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) (*)
ta có: \(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\)
=\(m^2-2m+1-m^2+m+2=3-m\)
để phương trình có nghiệm thì: \(\Delta'\ge0\Leftrightarrow m\le3\)
theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}\\x_1.x_2=\frac{c}{a}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m+1}\left(1\right)\\x_1.x_2=\frac{m-2}{m+1}\left(2\right)\end{matrix}\right.\)
theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=\frac{7}{4}\)
\(\Leftrightarrow4.\left(x_1+x_2\right)=7.x_1.x_2\left(3\right)\)
từ (1) ;(2) và (3) ta có : \(\frac{8\left(m-1\right)}{m+1}-\frac{7\left(m-2\right)}{m+1}=0\)
\(\Leftrightarrow\frac{m+6}{m+1}=0\Leftrightarrow m=-6\left(tm\right)\)
vì m+1 khác 0
vậy m=-6