tìm m =1/99+2/98+3/97+.....+99/1<đây là tử số>
1/.2+1/3+1/4......+1/100<mấu số>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}+\frac{99}{1}}\)
Xét M - 99 + 98 = \(\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(\Leftrightarrow M-1=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{100}{100}+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :
\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)
\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
chuyển phân số \(\frac{100}{100}\)ra sau , ta được :
\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)
\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)
Tử số: \(T=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\)
\(T=\frac{1}{99}+1+\frac{2}{98}+1+\frac{3}{97}+1+...+\frac{98}{2}+1+\frac{99}{1}+1-99\)
\(T=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+1=100\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Trong ngoặc chính là mẫu số nên
m=100.