Cho S = \(\dfrac{24}{5^2}\) + \(\dfrac{80}{9^2}\) + \(\dfrac{168}{13^2}\) + ... + \(\dfrac{408.410}{409^2}\). Chứng minh S > 101\(\dfrac{11}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{3.7}\)
\(\frac{1}{9^2}=\frac{1}{9.9}< \frac{1}{7.11}\)
.......
\(\frac{1}{409^2}=\frac{1}{409.409}=\frac{1}{(407+2)(411-2)}=\frac{1}{407.411-2.407+2.411}< \frac{1}{407.411}\)
Cộng theo vế ta có:
\(S<\frac{1}{3.7}+\frac{1}{7.11}+....+\frac{1}{407.411}(*)\)
Mà:
\(\frac{1}{3.7}+\frac{1}{7.11}+....+\frac{1}{407.411}=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{407.411}\right)\)
\(=\frac{1}{4}\left(\frac{7-3}{3.7}+\frac{11-7}{7.11}+....+\frac{411-407}{407.411}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{407}-\frac{1}{411}\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{411}\right)< \frac{1}{4}.\frac{1}{3}=\frac{1}{12}(**)\)
Từ \((*); (**)\Rightarrow S< \frac{1}{12}\)
Ta có đpcm.
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
a: =-21/36-3/36=-24/36=-2/3
b: =43/12*1/2+5/24=43/24+5/24=2
c: =8/9+1/9=1
e: =1-1/4+1/4-1/7+...+1/97-1/100
=1-1/100=99/100
\(\dfrac{21}{24}\cdot\dfrac{2}{11}:\dfrac{9}{8}=\dfrac{21}{24}\cdot\dfrac{2}{11}\cdot\dfrac{8}{9}=\dfrac{16}{99}\)
\(\dfrac{17}{9}\cdot\dfrac{5}{6}:\dfrac{12}{13}=\dfrac{17}{9}\cdot\dfrac{5}{6}\cdot\dfrac{13}{12}=\dfrac{1105}{648}\)
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
1) âm năm phần 12
2) âm mười bảy phần 9
3) -1
Đây là đáp án còn làm bài từ làm nhé
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(S=\left(\dfrac{3}{10}+\dfrac{3}{12}+\dfrac{3}{14}\right)+\left(\dfrac{3}{11}+\dfrac{3}{13}\right)\)
Đến bước trên thì do mình lười đánh máy nên bạn tính trong ngoặc bằng máy tính thì sẽ ra kết quả dưới đây (làm tắt):
\(S=\dfrac{107}{140}+\dfrac{72}{143}\)
Bước này phải quy đồng nhé! Ra số hơi dài nhưng phải chịu thôi bạn!
\(S=1,267782218\)
Mà \(1< 1,267782218< 2\)
Suy ra \(1< S< 2\)
Suy ra Điều phải chứng minh.
Xong rồi bạn, tick ''Đúng'' cho mình nhé!
\(S>\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{9.10}\)
\(S>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\) (1)
\(S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{8.9}\)
\(S< 1-\dfrac{1}{9}=\dfrac{8}{9}\) (2)
(1) và (2) => đpcm