Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2^{20}.3^5.5^5}{2^{10}.3^5.5^3}=2^{10}.5^2=1024.25=25600\)
tik pls
\(\dfrac{16^5\cdot15^5}{2^{10}\cdot3^5\cdot5^3}=\dfrac{2^{20}\cdot3^5\cdot5^5}{2^{10}\cdot3^5\cdot5^3}=2^{10}\cdot5^2=1024\cdot25=25600\)
( 4^5.9^4+2.6^9) : (2^10.3^8-6^8.2) = \(\frac{4^5.9^4+2.6^9}{2^{10}.3^8-6^8.2}=\frac{\left(2^2\right)^5.\left(3^2\right)^4+2.6^9}{2^{10}.3^8-6^8.2}\)
= \(\frac{2^{10}.3^8+2.6^9}{2^{10}.3^8-6^8.2}=\frac{2\left(6^8.8\right)}{2.6^8}=\frac{6^8.8}{6^8}=8\)
A = \(\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)
= \(\frac{2^{19}.5^2.3^4}{2^3.2^{18}.3^4.5}\)
= \(\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}\)
= \(\frac{5}{2^2}\) = \(\frac{5}{4}\)
\(A=\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)
\(A=\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}=\frac{5}{2^3}=\frac{5}{8}\)
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
\(=\dfrac{\left(2^4\right)^5.\left(3.5\right)^5}{2^{10}.3^5.5^4}=\dfrac{2^{20}.3^5.5^5}{2^{10}.3^5.5^4}=2^{10}.5=1024.5=5120\)
tik mik nha
ta có công thức quy lạp \(1.1!+2.2!+...+n.n!=\left(n+1\right)!-1\)
áp dụng vào bài \(1.1!+2.2!+3.3!+...+7.7!=\left(7+1\right)!-1=8!-1=40320-1=40319\)
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)