K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(=\dfrac{2^{20}.3^5.5^5}{2^{10}.3^5.5^3}=2^{10}.5^2=1024.25=25600\)

tik pls

\(\dfrac{16^5\cdot15^5}{2^{10}\cdot3^5\cdot5^3}=\dfrac{2^{20}\cdot3^5\cdot5^5}{2^{10}\cdot3^5\cdot5^3}=2^{10}\cdot5^2=1024\cdot25=25600\)

4 tháng 1 2019

là dấu nhân nha

4 tháng 1 2019

 ( 4^5.9^4+2.6^9) : (2^10.3^8-6^8.2) = \(\frac{4^5.9^4+2.6^9}{2^{10}.3^8-6^8.2}=\frac{\left(2^2\right)^5.\left(3^2\right)^4+2.6^9}{2^{10}.3^8-6^8.2}\)

\(\frac{2^{10}.3^8+2.6^9}{2^{10}.3^8-6^8.2}=\frac{2\left(6^8.8\right)}{2.6^8}=\frac{6^8.8}{6^8}=8\)

15 tháng 10 2017

=2700

19 tháng 12 2020

=> 2700

21 tháng 2 2019

A = \(\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)

   = \(\frac{2^{19}.5^2.3^4}{2^3.2^{18}.3^4.5}\)

   = \(\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}\) 

   = \(\frac{5}{2^2}\) = \(\frac{5}{4}\)

21 tháng 2 2019

\(A=\frac{2^{13}.5^2.2^6.3^4}{8.2^{18}.81.5}\)

\(A=\frac{2^{19}.5^2.3^4}{2^{21}.3^4.5}=\frac{5}{2^3}=\frac{5}{8}\)

28 tháng 8 2021

\(=\dfrac{\left(2^4\right)^5.\left(3.5\right)^5}{2^{10}.3^5.5^4}=\dfrac{2^{20}.3^5.5^5}{2^{10}.3^5.5^4}=2^{10}.5=1024.5=5120\)

tik mik nha

28 tháng 8 2021

giúp mik mik tik cho cảm ơn 

 

2 tháng 10 2016

ta có công thức quy lạp \(1.1!+2.2!+...+n.n!=\left(n+1\right)!-1\)

áp dụng vào bài \(1.1!+2.2!+3.3!+...+7.7!=\left(7+1\right)!-1=8!-1=40320-1=40319\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Ảnh hiển thị bị lỗi hết rồi bạn. Bạn coi lại.

25 tháng 1 2020

\(A=\left(x-1\right)^2-3\)

a) Với x = -2, ta có:

\(A=\left(-2-1\right)^2-3=6\)

b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: \(MIN_A=3\Leftrightarrow x=1\)

Khong chac dau nhe .-.

26 tháng 1 2020

A=(x-1)2-3

Với x=-2

Ta có:

A=(-2-1)2-3

A=(-3)2-3

A=9-6

A=3

Vậy A=3 với x=-2

b)Tính GTNN của biểu thức A

Để biểu thức A đạt GTNN <=>(x-1)2

<=>(x-1) đạt GTNN

<=>x=1

Vậy với x =1 thì biểu thức A đạt GTNN

6 tháng 7 2015

1) \(=\frac{6^5.5^3\left(1+5\right)}{6^5.5^3.3}=\frac{6}{3}=2\)

2)

\(2B=2+2^2+2^3+...+2^{101}\)

\(2B-B=B=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)=2^{101}-1\)