tìm gtnn của biểu thức p=x2+y2 biết x+y+xy=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)
b:\(B=x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=125^2-2\cdot2500\)
=10625
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)
\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: M=x^2-4x+4+1
=(x-2)^2+1>=1
Dấu = xảy ra khi x=2
b: N=y^2-y+1/4-13/4
=(y-1/2)^2-13/4>=-13/4
Dấu = xảy ra khi y=1/2
c: P=x^2-4x+4+y^2+y+1/4+11/4
=(x-2)^2+(y+1/2)^2+11/4>=11/4
Dấu = xảy ra khi x=2 và y=-1/2
\(B=y^2-y+1\)
\(=y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy: \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
Dấu \("="\) xảy ra \(\Leftrightarrow y-\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\).
\(---\)
\(C=x^2-4x+y^2-y+5\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(C_{min}=\dfrac{3}{4}\) khi \(x=2;y=\dfrac{1}{2}\).
\(Toru\)
\(B=y^2-y+1\)
\(=y^2-2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\Rightarrow B\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(C=x^2-4x+y^2-y+5\)
\(=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\)
Vì \(\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
ta có x + y + xy = 15 => x + y = 15 - xy => \(\left(x+y\right)^2=\left(15-xy\right)^2\)
\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy\)
\(=\left(xy\right)^2-32xy+225=\left(xy\right)^2-32xy+256-31\)
\(=\left(xy-16\right)^2-31\ge-31\)
Xin lỗi hôm qua mình giải sải. giờ mình xin đính chính lại nhé