\(\frac{4}{7}\);\(\frac{15}{11}\);\(\frac{20}{11}\);\(\frac{20}{27}\)xếp theo thứ tự từ giảm dần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\frac{1}{7}+\frac{1}{7^2}-\frac{1}{7^3}}{4+\frac{4}{7}+\frac{4}{7^2}-\frac{4}{7^3}}.\frac{858585}{313131}.\left(-1\frac{14}{17}\right)\)\
\(=\frac{1+\frac{1}{7}+\frac{1}{7^2}-\frac{1}{7^3}}{4.\left(1+\frac{1}{7}+\frac{1}{7^2}-\frac{1}{7^3}\right)}.\frac{85}{31}.\left(-\frac{31}{17}\right)\)
\(=\frac{1}{4}.\frac{85}{31}.\left(-\frac{31}{17}\right)\)
\(=-\frac{5}{4}\)
\(=\frac{1+\frac{1}{7}+\frac{1}{7^2}-\frac{1}{7^3}}{4\left(1+\frac{1}{7}+\frac{1}{7^2}-\frac{1}{7^3}\right)}.\frac{85.10101}{31.10101}.\left(-\frac{31}{17}\right).\)
\(=\frac{1}{4}.\frac{3.17}{31}.\left(-\frac{31}{17}\right)=-\frac{3}{4}\)
cách này mình tự nghĩ
\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)
\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)
\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)
\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)
mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)
\(\frac{\frac{4}{115}-\frac{4}{5}-\frac{4}{6115}}{\frac{7}{115}-\frac{7}{5}-\frac{7}{6115}}+\frac{3}{7}\)
\(=\frac{4\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}{7\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}+\frac{3}{7}\)
\(=\frac{4}{7}+\frac{3}{7}\)
\(=\frac{7}{7}=1\)
\(a)\)\(\frac{\frac{4}{115}-\frac{4}{5}-\frac{4}{6115}}{\frac{7}{115}-\frac{7}{5}-\frac{7}{6115}}+\frac{3}{7}\)
\(=\)\(\frac{4.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}{7.\left(\frac{1}{115}-\frac{1}{5}-\frac{1}{6115}\right)}+\frac{3}{7}\)
\(=\)\(\frac{4}{7}+\frac{3}{7}\)
\(=\)\(1\)
Đấm zô đúng thì biết câu trả lời của mình hay lắm đó cứ thử đi
\(=\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{3.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{7.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\)
\(=\frac{12}{4}:\frac{3}{7}=3.\frac{7}{3}=7\)
So sánh:
\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)
\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)
\(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)
So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)
Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)
\(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)
Vì 49.3 + 6 < 49.6 + 5 nên Q > P.
TL:
4/7 ; 20/27 ; 15/11 ; 20/11
@@@@@@@@@@@@@@
HT