1.3/2^2.2.4/3^3.3.5/4^4.....19.20/18^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S-1=2/1.3+2/3.5+...+2/99.100
=1-1/3+1/3-1/5+...+1/99-1/100
=1-1/100
=99/100
S=99/100+1
=199/100
K bít có đúng k nữa
I.\(B=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)
\(B=\left(9,8-8,9\right)+\left(8,7-7,8\right)+\left(7,6-6,7\right)+...+\left(2,1-1,2\right)\)
\(B=0,9+0,9+0,9+...+0,9\) ( 8 số 0,9 )
\(B=7,2\)
II.
\(\left(a\right)\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{19\cdot20}\)
\(=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)\)
\(=2\cdot\frac{19}{20}=\frac{19}{10}\)
\(\left(b\right)\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{17\cdot19}+\frac{4}{19\cdot21}\)
\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)\)
\(=2\cdot\frac{20}{21}=\frac{40}{21}\)
\(\left(c\right)\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{16\cdot18}+\frac{4}{18\cdot20}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a)Đặt \(A=\dfrac{6}{1.4}+\dfrac{6}{4.7}+\dfrac{6}{7.10}+...+\dfrac{6}{97.100}\)
\(3a=3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{97}-\dfrac{3}{100}\)
\(=3-\dfrac{3}{100}\)
\(=\dfrac{297}{100}\)
b)Đặt \(B=\dfrac{4}{1.3}+\dfrac{16}{3.5}+\dfrac{36}{5.7}+...+\dfrac{9604}{97.99}\)
\(=2b=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(2b=2-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{2}{7}+...+\dfrac{2}{97}-\dfrac{2}{99}\)
\(2b=2-\dfrac{2}{99}=\dfrac{198}{99}-\dfrac{2}{99}=\dfrac{196}{99}\)
c) Tương tự! Bạn tự làm nhé!
a: \(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=179/380
b: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{21\cdot23}-\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{3}-\dfrac{1}{575}=\dfrac{572}{1725}\)
c: \(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}-\dfrac{1}{20}-\dfrac{1}{21}\)
=1-1/21
=20/21
d: \(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\cdot...\cdot\left(1-\dfrac{1}{121}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{10}{11}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{12}{11}\)
\(=\dfrac{2}{11}\cdot\dfrac{12}{2}=\dfrac{12}{11}\)
câu a phải là như z ms làm được bn ơi
A = 31.3+33.5+...+319.2031.3+13.5+...+319.20\frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}
\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.20}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(=\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{20}\right)-x=\frac{4}{3}-\frac{221}{231}\)
\(=\left(\frac{1}{11}-\frac{1}{20}\right)-x=\frac{29}{77}\)
\(=\frac{9}{220}-x=\frac{29}{77}\)
\(x=\frac{9}{220}-\frac{29}{77}\)
bạn ơi chỗ \(\frac{2}{19.20}\) có phải là \(\frac{2}{19.21}\) không