Chứng Tỏ Rằng:A=3n+2-2n+2+3n-2n chia hết cho10
mọi n thuộcN*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)
Nếu n chia hết cho 5 ta dễ thấy đpcm
Nếu n : 5 dư 1 => n = 5k + 1
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5
Nếu n : 5 dư 2 => n = 5k + 2
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5)
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5
Nếu n : 5 dư 3 => n = 5k + 3
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5
Nếu n : 5 dư 4 => n = 5k + 4
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6
2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n^3 - n chia hết cho 6
3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6
=> n^3 + 23n chia hết cho 6
4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3]
= 2n(n + 1)(n - 1) + 3n(n + 1)
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
2n(n + 1)(n - 1) chia hết cho 2
=> A chia hết cho 2
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
3n(n + 1) chia hết cho 3
=> A chia hết cho 3
Mà (2 ; 3) = 1 (nguyên tố cùng nhau)
=> A chia hết cho 6
5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n
Chứng minh bằng quy nạp
Với n =1 => A = 0 chia hết cho 24
Giả sử A chia hết 24 đúng với n = k
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24
Ta phải chứng minh :
A chia hết cho 24 đúng với n = k + 1
Nghĩa là :
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1)
Khai triển ta được :
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k)
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1)
= 12k(k - 1)^2 = 12k(k - 1)(k - 1)
12 chia hết 12
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp)
=> A(k + 1) chia hết 24
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm)
6) n = 2k + 1 với k thuộc Z
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3
= 4k^2 + 12k + 8
= 4(k^2 + 3k + 2)
= 4(k + 2k + k + 2)
= 4(k + 1)(k + 2)
4 chia hết cho 4
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ
7) n = 2k + 1
Đặt A = n^3 + 3n^2 - n - 3
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3
= 8k^3 + 24k^2 + 16k
= 8k(k^2 + 3k + 2)
= 8k(k^2 + k + 2k + 2)
= 8k(k + 1)(k + 2)
8 chia hết cho 8
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
=> A chia hết cho 8.6 = 48 với n lẻ
a) \(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{14}\cdot2\cdot33⋮66\)
b) \(3^{m+2}-2^{n+4}+3^m+2^n\)
\(=3^m\cdot9+3-2^n\left(2^4-1\right)\)
\(=3^m\cdot10-2^{n-1}\cdot30\)
\(=30\left(3^{m-1}-2^{n-1}\right)⋮30\)
a) \(A=16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33=2^{14}\cdot66⋮66\)
b) Sửa đề
\(B=3^{n+2}-2^{n+4}+3^n+2^n=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n\cdot10-2^n\cdot15\\ =3^{n-1}\cdot30-2^{n-1}\cdot30=30\left(3^{n-1}-2^{n-1}\right)⋮30\)
(với mọi n nguyên dương)
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
các bài khác cũng nhân ra như vậy là tìm được n
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
\(A=3^{n+2}-2^{n+2}+3^n-2^n=9\cdot3^n+3^n-\left(4\cdot2^n+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)=10\cdot3^n-2\cdot5\cdot2^{n-1}=10\cdot\left(3^n-2^{n-1}\right)\)
Với mọi n thuộc N* thì \(2^{n-1}\)là 1 số nguyên nên A chia hết cho 10. (ĐPCM)
câu hỏi tương tự