'cho 3 số dương abc thỏa mãn a+b+c >=3. chứng minh a^2+1/b+c + b^2+1/c+a + c^2+1/a+b >=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Để chứng minh điều phải chứng minh, ta sẽ sử dụng phương pháp Chứng minh bằng Quy nạp (Mathematical Induction). Bước 1: Ta chứng minh bất đẳng thức này đúng với trường hợp a, b, c không giống nhau. - Giả sử a = b. Khi đó, a = b = (3 - 2a) / 2. Thầy vào bất đẳng thức cần chứng minh, ta có: abc(1+a^2)(1+b^2)(1+c^2) = a^2c(1+a^2)^2(1+c^2) Đặt x = a^2, y = c. Ta cần chứng minh: xy(1+x)^2(1+y^2) ≤ 8 Từ điều kiện a + b + c = 3, ta có: a + b = 3 - c ab = (a + b) ^2 - (a^2 + b^2) = (3 - c)^2 - (a^2 + b^2) = (3 - c)^2 - (3 - 2c) = c^2 - 3c + 6 Because a and b are test of method t^2 - (3 - c)t + (c^2 - 3c + 6) = 0 thuộc các nguyên nên theo Định lí Viết a^2 + b^2 = (3 - c)c^2 - 3(c^2 - 3c + 6) = -2c^3 + 9c^2 - 9c + 18 Ta lại có abc = ac(3 - a - c) = c(3c^2 - ac - c^2) = c(-2c^3 + 9c^2 - 9c) Nên bất đẳng thức cần chứng minh trở thành: (x*3)^2(1 + x)(1 + y) ≤ 8 Hay (x*3)^2(1 + x)(1 + y) ≤ 8 Áp dụng bất đẳng thức AM-GM hai lần, ta có: (x*3)^2 (1 + x)(1 + y) ≤ [(x*3)^2 + (1 + x) + (1 + y)] / 3 = [9x^2 + 2x + 2 + y] / 3 = ( 9x^2 + 2x + 2 + y) / 3 = (9x^2 + y^2 + 2x + 2) / 3 Tiếp tục áp dụng Bất đẳng thức AM-GM, ta được: (9x^2 + y^2 + 2x + 2)/3 ≥ 4√[(9x^2)(y^2)(2x)(2)] = 4√[36x^3y^2] = 24xy√x Khi đó, ta cần chứng minh: 24xy√x ≤ 8 <=> 3xy√x ≤ 1 <=> 27x^3y^2 ≤ 1 Từ a + b + c = 3, ta có: (a + b + c)^3 = a^3 + b^3 + c^3 + 3(a^2b + ab^2 + b^2c + bc^ 2 + c^2a + ca^2) + 6abc Thầy a + b + c = 3 và abc = ac(3 - a - c) = c(3c^2 - ac - c^2) = c(-2c^ 3 + 9c^2 - 9c), ta có: 27x^3y^2 ≤ 1 Vì vậy, ta đã chứng minh được khi a=b, bất đẳng thức cần chứng minh là đúng. Bước 2: Giả sử a, b, c không giống nhau. Ta sẽ chứng minh bất đẳng thức này đúng với
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)