Cho 2 số hữu tỉ a/b và c/d ( b,d > 0). CMR a/b < c/d nêu a.d < c.b và ngược lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}< \frac{c}{d}\left(1\right)\).Nhân 2 vế của (1) với bd ta có:
\(\frac{a}{b}\cdot bd=ad< \frac{c}{d}\cdot bd=bc\) (Đpcm)
\(ad< bc\left(2\right)\).Chia 2 vế của (2) cho bd ta có:
\(\frac{ad}{bd}=\frac{a}{b}< \frac{bc}{bd}=\frac{c}{d}\)(Đpcm)
Để a/b , a+c/b+d thi a(b+d)< b (a+c)<=> ab+ad < ab +bc <=>ab < bc <=> a/b < c/d
Để a+c/b+d < c/d thì (a+c).đ < (b+d).c <=> ab+cd < bc + cd <=> ad < bc <=> a/b < c/d
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có:
a.d<b.c
Chúc bạn học tốt!!!! ^-^
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
Mẫu chung bd > 0 do b,d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
Từ: a/b<c/d bạn nhân cả 2 vế Bất đẳng thức (BĐT) với tích (bxd) là 1 số dương , BĐT không đổi chiều.
Sẽ được ad <cb.
Và ngược lại, nếu ad<cd thì chia 2 vế BĐT cho tích (bxd) là 1 số dương , BĐT không đổi chiều.
Sẽ được a/b < c/d.
giải giúp luôn đi. ko hỉu j hết Đinh Thùy Linh