K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2\ge0\) (luôn đúng)

\(\Leftrightarrow2a^4+2b^4+2c^4-2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge0\)

\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

\(\Leftrightarrow a^4+b^4+c^4+2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge3.\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3.\left(a^2b^2+b^2c^2+c^2a^2\right)\left(1\right)\)

+)ta có:\(a^2.b^2+b^2.c^2\ge2.\sqrt{a^2.b^2.b^2.c^2}=2ab^2c\)(BĐT cô si)

tương tự thì ta có:\(b^2c^2+c^2a^2\ge2abc^2;c^2a^2+a^2b^2\ge2a^2bc\)

\(\Rightarrow2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc.\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\left(2\right)\)

từ 1 và 2,ta có: \(\left(a^2+b^2+c^2\right)^2\ge3.abc\left(a+b+c\right)\)

\(\Leftrightarrow1\ge3.abc\left(a+b+c\right)\)

\(\Leftrightarrow abc.\left(a+b+c\right)\le\frac{1}{3}\)

+)lại có:\(\frac{a^2}{1+2bc}+\frac{b^2}{1+2ca}+\frac{c^2}{1+2ab}=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2cab^2}+\frac{c^4}{c^2+2abc^2}\)

ÁP dụng BĐT cộng mẫu ta có:

\(\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2cab^2}+\frac{c^4}{c^2+2abc^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+2abc\left(a+b+c\right)}\ge\frac{1}{1+2.\frac{1}{3}}=\frac{3}{5}\)

dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

\(\left(a^2+b^2+c^2\right)=1\)

\(\Leftrightarrow3a^2=1\)

\(\Leftrightarrow a=\pm\frac{1}{\sqrt{3}}\)

vậy \(\frac{a^2}{1+2bc}+\frac{b^2}{1+2ca}+\frac{c^2}{1+2ab}\ge\frac{3}{5}\)dấu bằng xảy ra \(\Leftrightarrow a=b=c=\pm\frac{1}{\sqrt{3}}\)

28 tháng 2 2022

Ta có \(P=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)(BĐT Schwarz)

\(=\frac{1^2}{1+2abc\left(a+b+c\right)}\le\frac{1}{1+\frac{2\left(a+b+c\right)^3}{27}.\left(a+b+c\right)}=\frac{1}{1+\frac{2}{27}\left(a+b+c\right)^4}\)(BĐT Cauchy)

Lại có (a + b + c)2 \(\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(a+b+c\right)^4\le9\left(a^2+b^2+c^2\right)^2=9\)

Khi đó P \(\ge\frac{1}{1+\frac{2}{27}.9}=\frac{1}{\frac{5}{3}}=\frac{3}{5}\left(\text{ĐPCM}\right)\)

Dấu "=" khi a = b = c = \(\frac{1}{\sqrt{3}}\)

17 tháng 8 2018

Áp dụng BĐT Cauchy-SChwarz ta có:

\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)

\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)

Dấu "=" bạn tự nghiên cứu nhé :D

9 tháng 9 2018

DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.

9 tháng 9 2019

Áp dụng bđt svac-xơ có:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=> \(A\ge\frac{9}{\left(a+b+c\right)^2}\)

Với a,b,c>0 và a+b+c \(\le1\) => 0<(a+b+c)2\(\le1\)=> \(\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

=>A\(\ge9\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

23 tháng 11 2019

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

ta có A\(\ge\frac{9}{\left(a+b+c\right)^2}=9\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
6 tháng 4 2020

\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+2ab+b^2+2bc+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

23 tháng 9 2017

làm ra chưa :v

17 tháng 4 2020

\(\Rightarrow\frac{1}{2ab^2+1}\ge1-\frac{2}{9}\left(a+2b\right)\)

Tương tự ta có: \(\frac{1}{2bc^2+1}\ge1-\frac{2}{9}\left(b+2c\right)\)\(\frac{1}{2ca^2+1}\ge1-\frac{2}{9}\left(c+2a\right)\)

Cộng từng vế của các bất đẳng thức trên, ta được:

\(\text{∑}_{cyc}\frac{1}{2ab^2+1}\ge3-\frac{2}{9}.3\left(a+b+c\right)=1\)

Đẳng thức xảy ra khi a = b = c = \(\frac{1}{3}\)

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

7 tháng 3 2020

Ta sẽ chứng minh :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0

Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )

\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )

Ta có :

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

( Dấu " = " xay ra khi a=b)

Tương tự ta cũng có :

\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )

\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!

NV
7 tháng 3 2020

\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

NV
4 tháng 3 2019

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)