Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-SChwarz ta có:
\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)
\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)
Dấu "=" bạn tự nghiên cứu nhé :D
DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.
Áp dụng bđt svac-xơ có:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)
<=> \(A\ge\frac{9}{\left(a+b+c\right)^2}\)
Với a,b,c>0 và a+b+c \(\le1\) => 0<(a+b+c)2\(\le1\)=> \(\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
=>A\(\ge9\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
ta có A\(\ge\frac{9}{\left(a+b+c\right)^2}=9\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+2ab+b^2+2bc+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\Rightarrow\frac{1}{2ab^2+1}\ge1-\frac{2}{9}\left(a+2b\right)\)
Tương tự ta có: \(\frac{1}{2bc^2+1}\ge1-\frac{2}{9}\left(b+2c\right)\); \(\frac{1}{2ca^2+1}\ge1-\frac{2}{9}\left(c+2a\right)\)
Cộng từng vế của các bất đẳng thức trên, ta được:
\(\text{∑}_{cyc}\frac{1}{2ab^2+1}\ge3-\frac{2}{9}.3\left(a+b+c\right)=1\)
Đẳng thức xảy ra khi a = b = c = \(\frac{1}{3}\)
Ta sẽ chứng minh :
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0
Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )
Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )
\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )
Ta có :
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
( Dấu " = " xay ra khi a=b)
Tương tự ta cũng có :
\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )
\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!
\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
cho 3 so duong a,b,c tm \(a+b+c=3\)
cmr \(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\ge1\)
Ta có:
\(3=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow abc\le1\)
Từ đó ta có:
\(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\)
\(\ge\frac{1}{1+\frac{2b}{c}}+\frac{1}{1+\frac{2c}{a}}+\frac{1}{1+\frac{2a}{b}}\)
\(=\frac{c}{c+2b}+\frac{a}{a+2c}+\frac{b}{b+2a}\)
\(=\frac{c^2}{c^2+2bc}+\frac{a^2}{a^2+2ca}+\frac{b^2}{b^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế:
\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)
Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)
Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.
Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))
Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
(Dấu "=" xảy ra khi a = b)
Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)
\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))
Cách : AM - GM :
\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)
Áp dụng BĐT AM - GM :
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)
\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)
ta có:
\(\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2\ge0\) (luôn đúng)
\(\Leftrightarrow2a^4+2b^4+2c^4-2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge0\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
\(\Leftrightarrow a^4+b^4+c^4+2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge3.\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3.\left(a^2b^2+b^2c^2+c^2a^2\right)\left(1\right)\)
+)ta có:\(a^2.b^2+b^2.c^2\ge2.\sqrt{a^2.b^2.b^2.c^2}=2ab^2c\)(BĐT cô si)
tương tự thì ta có:\(b^2c^2+c^2a^2\ge2abc^2;c^2a^2+a^2b^2\ge2a^2bc\)
\(\Rightarrow2.\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc.\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\left(2\right)\)
từ 1 và 2,ta có: \(\left(a^2+b^2+c^2\right)^2\ge3.abc\left(a+b+c\right)\)
\(\Leftrightarrow1\ge3.abc\left(a+b+c\right)\)
\(\Leftrightarrow abc.\left(a+b+c\right)\le\frac{1}{3}\)
+)lại có:\(\frac{a^2}{1+2bc}+\frac{b^2}{1+2ca}+\frac{c^2}{1+2ab}=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2cab^2}+\frac{c^4}{c^2+2abc^2}\)
ÁP dụng BĐT cộng mẫu ta có:
\(\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2cab^2}+\frac{c^4}{c^2+2abc^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+2abc\left(a+b+c\right)}\ge\frac{1}{1+2.\frac{1}{3}}=\frac{3}{5}\)
dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\left(a^2+b^2+c^2\right)=1\)
\(\Leftrightarrow3a^2=1\)
\(\Leftrightarrow a=\pm\frac{1}{\sqrt{3}}\)
vậy \(\frac{a^2}{1+2bc}+\frac{b^2}{1+2ca}+\frac{c^2}{1+2ab}\ge\frac{3}{5}\)dấu bằng xảy ra \(\Leftrightarrow a=b=c=\pm\frac{1}{\sqrt{3}}\)
Ta có \(P=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)(BĐT Schwarz)
\(=\frac{1^2}{1+2abc\left(a+b+c\right)}\le\frac{1}{1+\frac{2\left(a+b+c\right)^3}{27}.\left(a+b+c\right)}=\frac{1}{1+\frac{2}{27}\left(a+b+c\right)^4}\)(BĐT Cauchy)
Lại có (a + b + c)2 \(\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(a+b+c\right)^4\le9\left(a^2+b^2+c^2\right)^2=9\)
Khi đó P \(\ge\frac{1}{1+\frac{2}{27}.9}=\frac{1}{\frac{5}{3}}=\frac{3}{5}\left(\text{ĐPCM}\right)\)
Dấu "=" khi a = b = c = \(\frac{1}{\sqrt{3}}\)