cho ∆ABC có AB<AC. Gọi M là trung điểm của BC. Từ C vẽ đường thẳng // AB cắt tia AM tại D.
a Chứng minh ∆ABM =∆CDM.
b) So sánh AC và CD.
c) Chứng minh AM<AC.
d) So sánh góc BAM và góc CAM.
di so sánh BAN và
CAM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia cho 54 dư 38 => a = 54k + 38 = 18.3k + 36 + 2 = 18.(3k +2) + 2
=> a chia cho 18 dư 2; a chia hco 18 được thương là 14
=> a = 18.14 + 2 = 254
b) => 100a + 10b + c + 10a + b + a = 874
=> 111a + 11b + c = 874
=> 111a < 874 => a < 8
Hơn nữa, 11b + c < 11.10 + 10 = 120 => 111a + 11b + c < 120 + 111a
=> 111a + 120 > 874 => 111a > 754 => a > 6 mà a < 8 nên a = 7
vậy 777 + 11b + c = 874 => 11b + c = 874 - 777 = 97
Tương tự, => b < 9 và b > 7 => b = 8 => 88 + c = 97 => c = 9
Vậy abc = 789
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
a: Xét ΔABM và ΔDCM có
\(\widehat{ABM}=\widehat{DCM}\)
MB=MC
\(\widehat{BMA}=\widehat{CMD}\)
Do đó:ΔABM=ΔDCM
b: Ta có: ΔABM=ΔDCM
nên AB=DC
mà AB<AC
nên DC<AC