cho 2 số x, y thỏa mãn 3x=2y và x≠0, y≠0 rút gọn biểu thức P =\(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\) (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)
Thay x + y = 1 vào B ta có
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)
\(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)
A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)
Sorry mình không giúp đc bạn
3x=2y
nên x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)
\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)