(1-1/2)x(1-1/3)x(1-1/4)x...x(1-1/2015)x(1-1/2016)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)..........\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.........\frac{2015}{2016}\)
\(=\frac{1.2.......2015}{2.3.......2016}\)
\(=\frac{1}{2016}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)........\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.......\frac{2015}{2016}=\frac{1}{2016}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0
=>x=0-1
=>x-1
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
(1-1/2)x(1-1/3)x(1-1/4)x.....x(1-1/2015)x(1-1/2016)
=> 1/2 x 2/3 x 3/4 x 4/5 x 5/6 x 6/7 x 7/8 x 8/9 x......... x 2014/2015 x 2015/2016
Ta rút gọn cho tử này mẫu kia còn: 1/2016.
Đáp số : 1/2016
\(=\frac{2-1}{2}\times\frac{3-1}{3}\times\frac{4-1}{4}\times...\times\frac{2015-1}{2015}\times\frac{2016-1}{2016}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)
(1-1/2)x(1-1/3)x(1-1/4) x ...x (1-1/2016)
= 1/2x2/3x3/4x.....x2015/2016
= \(\frac{1x2x3x...x2015}{2x3x4x...x2016}\)
= 1/2016
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)