K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

bn viết rõ đề đi

31 tháng 5 2016

\(\frac{x}{x-1}+\frac{x}{x+1}=\frac{4}{x}\Leftrightarrow\frac{x^2\left(x+1\right)+x^2\left(x-1\right)-4\left(x+1\right)\left(x-1\right)}{x\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{x^3+x^2+x^3-x^2-4x^2+4}{x\left(x+1\right)\left(x-1\right)}=0\)\(\Leftrightarrow\frac{2x^3-4x^2+4}{x\left(x+1\right)\left(x-1\right)}=0\)

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

16 tháng 7 2021

 a,(x-1) (x²+x²+x+1)

=(x-1)(2x2+x+1)

=2x3+2x+x-2x2-x-1

=2x3-2x2+2x-1

b, (x+1) (x4 -x3+x2-x+1)

=x5-x4+x3-x2+x+x4-x3+x2-x+1

=x5+1

24 tháng 9 2023

Câu này  cô làm rồi em nhá, em xem phần câu hỏi của tôi ý

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

19 tháng 6 2015

x(x+4)(x-4)-(x^2+1)(x^2-1)=x(x2-16)-(x4-1)

=x3-16x-x4+1

\(T=\dfrac{2\left(x-1\right)}{\sqrt{x}+1}+\dfrac{x-4}{\sqrt{x}-2}\)

\(T=\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)

\(T=2\left(\sqrt{x}+1\right)+\left(\sqrt{x}+2\right)\)

\(T=2\sqrt{x}+2+\sqrt{x}+2\)

\(T=3\sqrt{x}+4\)

\(x=4\)

\(\Rightarrow T=3\sqrt{4}+4=3.2+4=10\)

24 tháng 9 2023

Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)

Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)

Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)

Thì Q = \(\dfrac{A}{B}\) 

A              = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)

A.\(x^4\)         =       \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)

A.\(x^4\) - A    = \(x^{2024}\) - 1

A              = \(\dfrac{x^{2024}-1}{x^4-1}\) 

B             = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) 

B.\(x^2\)        =       \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)

B\(x^2\) - B   =       \(x^{2024}\) - 1

B             = \(\dfrac{x^{2024}-1}{x^2-1}\)

Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)

Q  = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)

Q  = \(\dfrac{1}{x^2+1}\)

 

hần II. TỰ LUẬN âu 1: Rút gọn biểu thức 3 = ((sqrt(x) + 1)/(sqrt(x) - 1) - (sqrt(x) - 1)/(sqrt(x) + 1)) / ((sqrt(x))/(x + sqrt(x)) - (sqrt(x))/(1 - sqrt(x)) + 1/(x - 1)) (Với x > 0 ,x ne1) . 1 1 + 4√x √x+1 (với x> 0; x= 4). √x-2 √x+2x-4 ầu 2: Rút gọn biểu thức B= âu 3: Rút gon biểu thức 4= (10sqrt(x))/(x + 3sqrt(x) - 4) - (2sqrt(x) - 3)/(sqrt(x) + 4) + sqrt x +1 1- sqrt x (voi x>=0;x ne1) ầu 4: Rút gọn biểu thức: P = ((4x)/(4 - x) + (2 +...
Đọc tiếp

hần II. TỰ LUẬN âu 1: Rút gọn biểu thức 3 = ((sqrt(x) + 1)/(sqrt(x) - 1) - (sqrt(x) - 1)/(sqrt(x) + 1)) / ((sqrt(x))/(x + sqrt(x)) - (sqrt(x))/(1 - sqrt(x)) + 1/(x - 1)) (Với x > 0 ,x ne1) . 1 1 + 4√x √x+1 (với x> 0; x= 4). √x-2 √x+2x-4 ầu 2: Rút gọn biểu thức B= âu 3: Rút gon biểu thức 4= (10sqrt(x))/(x + 3sqrt(x) - 4) - (2sqrt(x) - 3)/(sqrt(x) + 4) + sqrt x +1 1- sqrt x (voi x>=0;x ne1) ầu 4: Rút gọn biểu thức: P = ((4x)/(4 - x) + (2 + sqrt(x))/(2 - sqrt(x)) - (2 - sqrt(x))/(2 + sqrt(x))) / ((sqrt(x) + 3)/(2 - sqrt(x))) * voix >=0 v hat a x ne4. P= (1/(x - sqrt(x)) + 1/(sqrt(x) - 1)) / ((sqrt(x) + 1)/((sqrt(x) - 1) ^ 2)) ( nabla hat partial i x>0,x ne1) âu 5: Rút gọn biểu thức ầu 6: Rút gọn biểu thức: Q= (1/(sqrt(x) - 1) + 1/(x - sqrt(x))) / (1/(sqrt(x) + 1) * 2/(1 - x)) ( với x>0;x=1) âu 7: Tìm các giá trị của tham số k đề hàm số y = (2k - 1) * x + 3 - k đồng biến trên R âu 8: Tìm m để đường thẳng y= (2 - m) * x +3(m ne2) có hệ số góc bằng 3. 0. Tìm các giá trị của tham số k để đồ thị của hàm số y = (k - 1) * x + k đi qua điềm x-4

1
AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc đề dễ hiểu hơn bạn nhé.