K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(2m-2\right)^2-4\left(m-5\right)\)

=4m^2-8m+4-4m+20

=4m^2-12m+24

=4m^2-12m+9+15

=(2m-3)^2+15>0

=>PT luôn có hai nghiệm

A=(x1+x2)^2-2x1x2

=(2m-2)^2-2(m-5)

=4m^2-8m+4-2m+10

=4m^2-10m+14

=4(m^2-5/2m+7/2)

=4(m^2-2*m*5/4+25/16+31/16)

=4(m-5/4)^2+31/4>=31/4

Dấu = xảy ra khi m=5/4

12 tháng 2 2023

Ty

7 tháng 4 2018

Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1  0 và

∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ;   ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8

Xét

A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án: B

12 tháng 11 2018

Đáp án D

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

16 tháng 1 2021

Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)

Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)

\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m

Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)

a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)

\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)

\(\Leftrightarrow m^2+2m+1-2m+4=100\)

\(\Leftrightarrow m^2=95\)

\(\Leftrightarrow m=\sqrt{95}\)

b, \(P=\left|x_1-x_2\right|\)

\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m+1\right)^2-4\left(m-2\right)\)

\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)

\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)

\(minP=2\sqrt{2}\Leftrightarrow m=1\)

Biểu thức nào bạn ơi?

29 tháng 5 2021

\(x^2-2\left(m-1\right)x+m-5=0\)

Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

Đặt \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)

\(=\left(2m-3\right)^2+15\ge15\)

\(\Rightarrow A\ge\sqrt{15}\)

\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)

29 tháng 5 2021

ok bạn

 

NV
25 tháng 3 2022

\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a.

\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)

\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)

\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)

\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)

\(P_{min}=32\) khi \(m=-3\)

b.

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)

Trừ vế cho vế:

\(x_1+x_2-x_1x_2=-8\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.