tìm x,y nguyên dương sao cho
6xy+10x+9y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy+10x+9y=2
<=>2x(3y+5)+9y+15-17=0
<=>2x(3y+5)+3(3y+5)=17
<=>(2x+3)(3y+5)=17
tới đây bạn lập bảng là xong
a)\(\left(2x+3\right)\left(3y+5\right)=17\)
b) \(\left(2y+9\right)\left(11-2x\right)=57\)
c) \(\left(3x-5\right)\left(3y-2\right)=31\)
Lần lượt xét từng trường hợp cho mỗi câu .
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có: \(\left(x^2-9y^2\right)^2\ge\left(x+3y\right)^2>9y^2+6y\)
\(\Rightarrow y< 4\)
\(\Rightarrow y\in\left\{1;2;3\right\}\)
Vậy nghiệm nguyên dương \(x,y\)là \(\left(4;1\right)\)
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1
Ta có: \(6xy+10x+9y-2=0\Leftrightarrow2x\left(3y+5\right)+9y+15-17=0\)
\(\Leftrightarrow2x\left(3y+5\right)+3\left(3y+5\right)=17\Leftrightarrow\left(2x+3\right)\left(3y+5\right)=17\)
Ta có bảng sau:
2x+3 x 3y+5 y 1 -1 1 17 -17 17 -17 -1 -1 4 7 -4 3 -2 -22 3 -10 -2 Loại Loại Loại Loại
Vậy không tồn tại x, y nguyên dương thỏa mãn bài toán.