Cho tam giác ABC có diện tích 84 cm2 , D và G lần lượt là trung điểm của AB và AC , trên cạnh BC lấy E và F sao cho BE = EF = FC . Tính diện tích đa giác ADEFG.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VH
30 tháng 5 2015
a) nối B với G
SBFC gấp 3 lần sEFC vì: -EC=1/4 BC
-chung chiều cao hạ từ đỉnh F xuống đáy BC
=> Diện tích tam giác BFC là: 2 x 4 = 8 cm2
sBFC = 1/3 sABC vì:FC = 1/3 AC
Chung chiều cao hạ từ đỉnh B xuống AC
=> sABC là:8 x 3 = 24 cm2
phần này ok rùi, còn lại chiều mik send tiếp cho bạn nhá
ke DG, la duong trung binh cua tam giac ABC,=1/2BC
AD/AB=AG/AC=DG/BC=1/2
=>tam giac ADG dong dang voi tam giac ABC
=> Stam giac ADG/Stam giac ABC=(1/2)^2=1/4
=>StamgiacADG=84*/4=21 (1)
kẻ đường cao AH giao DG tại T , AT/AH=1/2
ta co Stamgiac ABC =1/2BC*AH
=>BC*AH=168
ma Shinh thang DGFE =(EF+DG)*TH
<=>5/24BC*AH (EF=1/3BC;DG=1/2BC;TH=1/2AH)
<=>35 (2)
Vay Sda giac ADEFG=Stam giacADG+Shinh thang DEFG=21(1)+35(2)=56
Kẻ AE,AF . Ta có :
SABE = SAFC = \(\frac{S_{ABC}}{3}\)= \(\frac{84cm^2}{3}\)= 28 cm2 vì chúng có chung đường cao hạ từ A và có đáy BE = FC = \(\frac{BC}{3}\) . SDBE = \(\frac{S_{ABE}}{2}\)= \(\frac{28cm^2}{2}\)= 14 cm2 vì chúng có chung đường cao hạ từ E và có đáy DB = \(\frac{AB}{2}\).
SGFC = \(\frac{S_{AFC}}{2}\)= \(\frac{28cm^2}{2}\)= 14 cm2 vì chúng có chung đường cao hạ từ F và có đáy GC = \(\frac{AC}{2}\)
=> SADEFG = SABC - SDBE - SGFC = 84 - 14 - 14 = 56 (cm2)