K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

tam giác OHB = tam giác AHB

góc OHB = góc AHB

OH = AH ( gt) 

HB chung 

tam giác OHB = tam giác AHB

28 tháng 5 2016

tam giác OHB =tam giác AHB

suy ra: OB = AB

suy ra tam giác ABO cân tại B

suy ra góc O2 = góc A

mà O1 = O2 ( OM là phân giác của góc xOy)

suy ra  góc O= góc A

mà ở vị trí so le trong 

ruy ra điều phải chứng minh

20 tháng 12 2019

a) Xét 2 \(\Delta\) vuông \(OHB\)\(AHB\) có:

\(\widehat{OHB}=\widehat{AHB}=90^0\left(gt\right)\)

\(OH=AH\) (vì H là trung điểm của \(OA\))

Cạnh HB chung

=> \(\Delta OHB=\Delta AHB\) (cạnh huyền - cạnh góc vuông).

b) Theo câu a) ta có \(\Delta OHB=\Delta AHB.\)

=> \(\widehat{BOH}=\widehat{BAH}\) (2 góc tương ứng).

Ta có: \(Om\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(H\in Om\left(gt\right)\)

=> \(OH\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OH\) là tia phân giác của \(\widehat{BOC}\)

=> \(\widehat{BOH}=\widehat{COH}.\)

\(\widehat{BOH}=\widehat{BAH}\left(cmt\right).\)

=> \(\widehat{COH}=\widehat{BAH}\)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(OC.\)

Hay \(AB\) // \(Oy.\)

d) Vì \(AB\) // \(Oy\left(cmt\right)\)

=> \(\widehat{BOH}=\widehat{CAH}\) (vì 2 góc so le trong).

Ta có:

\(\left\{{}\begin{matrix}\widehat{COH}=\widehat{BAH}\left(cmt\right)\\\widehat{BOH}=\widehat{CAH}\left(cmt\right)\end{matrix}\right.\)

\(\widehat{BOH}=\widehat{COH}\left(cmt\right)\)

=> \(\widehat{BAH}=\widehat{CAH}.\)

=> \(AH\) là tia phân giác của \(\widehat{BAC}.\)

Hay \(AO\) là tia phân giác của \(\widehat{BAC}\left(đpcm\right).\)

Chúc bạn học tốt!

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc nhọn xOy...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

0
   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC