K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

a) Xét 2 \(\Delta\) vuông \(OHB\)\(AHB\) có:

\(\widehat{OHB}=\widehat{AHB}=90^0\left(gt\right)\)

\(OH=AH\) (vì H là trung điểm của \(OA\))

Cạnh HB chung

=> \(\Delta OHB=\Delta AHB\) (cạnh huyền - cạnh góc vuông).

b) Theo câu a) ta có \(\Delta OHB=\Delta AHB.\)

=> \(\widehat{BOH}=\widehat{BAH}\) (2 góc tương ứng).

Ta có: \(Om\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(H\in Om\left(gt\right)\)

=> \(OH\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OH\) là tia phân giác của \(\widehat{BOC}\)

=> \(\widehat{BOH}=\widehat{COH}.\)

\(\widehat{BOH}=\widehat{BAH}\left(cmt\right).\)

=> \(\widehat{COH}=\widehat{BAH}\)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(OC.\)

Hay \(AB\) // \(Oy.\)

d) Vì \(AB\) // \(Oy\left(cmt\right)\)

=> \(\widehat{BOH}=\widehat{CAH}\) (vì 2 góc so le trong).

Ta có:

\(\left\{{}\begin{matrix}\widehat{COH}=\widehat{BAH}\left(cmt\right)\\\widehat{BOH}=\widehat{CAH}\left(cmt\right)\end{matrix}\right.\)

\(\widehat{BOH}=\widehat{COH}\left(cmt\right)\)

=> \(\widehat{BAH}=\widehat{CAH}.\)

=> \(AH\) là tia phân giác của \(\widehat{BAC}.\)

Hay \(AO\) là tia phân giác của \(\widehat{BAC}\left(đpcm\right).\)

Chúc bạn học tốt!

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc nhọn xOy...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

0
6 tháng 5 2016

Huyền ơi đề bài sai nặng rồi hỏi lại đi bài 1

4 tháng 5 2016

bạn ơi đề bài này có đúng không bài 1 ý