Giúp mk với!!
Giải phương trình:
X4 +x2 + 6x -8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x - | 6x - 7 | = -x + 8
* x > 0
Phương trình trở thành : 2x - 6x - 7 = -x + 8
<=> 2x - 6x + x = 8 + 7
<=> -3x = 15
<=> x = -5 ( không tmđk vì < 0 )
* x < 0
Phương trình trở thành : 2x - (-6x - 7) = -x + 8
<=> 2x + 6x + 7 = -x + 8
<=> 2x + 6x + x = 8 - 7
<=> 9x = 1
<=> x = 1/9 ( không tmđk vì > 0 )
Vậy phương trình vô nghiệm
Bài làm
~ Bài bạn Rin thiếu ngoặc khi xét biểu thức nếu vào phương trình đầu ~
*Nếu 6x - 7 > 0 <=> x > 7/6
----> | 6x - 7 | = 6x - 7
=> Phương trình: 2x - ( 6x - 7 ) = -x + 8
<=> 2x - 6x + 7 = -x + 8
<=> -4x + 7 + x - 8 = 0
<=> -3x - 1 = 0
<=> -3x = 1
<=> x = -1/3 ( Không thỏa mãn )
*Nếu 6x - 7 < 0 <=> x > 7/6
----> | 6x - 7 | = -( 6x - 7 ) = 7 - 6x
=> Phương trình: 2x - ( 7 - 6x ) = -x + 8
<=> 2x - 7 + 6x + x - 8 = 0
<=> 9x - 15 = 0
<=> x = 15/9 ( Thỏa mãn )
Vậy x = 15/9 là nghiệm phương trình.
\(2x^2-6x-3=0\)
\(\Delta'=\left(-3\right)^2+3.2=15>0\)
⇒ Phương trình có hai nghiệm phân biệt với mọi m.
Theo hệ thức viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(B=3x_1x_2-x_1^2-x_2^2=-\left(x_1+x_2\right)^2+5x_1x_2=-9+5.\left(-\dfrac{3}{2}\right)=\dfrac{135}{2}\)
Vậy \(B=-\dfrac{135}{2}\) với hai nghiệm phân biệt thỏa mãn.
\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)
\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)
\(d,5x^2-x+2=0\)
Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)
Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm
\(2x^2-6x-3=0\)
\(\Delta'=3^2+3.2=15>0\)
⇒ Phương trình có hai nghiệm phân biệt.
Theo hệ thức viét có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(A=x_1^2x_2^2-2x_1-2x_2=\left(x_1x_2\right)^2-2\left(x_1+x_2\right)=\left(-\dfrac{3}{2}\right)^2-2.3=-\dfrac{15}{4}\)
Vậy \(A=-\dfrac{15}{4}\) thì thỏa mãn điều kiện bài ra.
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)
a)Pt \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\dfrac{1}{3}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{5}{6}\\2x-1=-\dfrac{5}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Vậy...
b)Đk:\(x\ge3\)
Pt \(\Leftrightarrow\sqrt{x-3}\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-4=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=4\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
Vậy...
c)Đk:\(x\ge1\)
\(x+\sqrt{x-1}=13\)
\(\Leftrightarrow\sqrt{x-1}=13-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-x\ge0\\x-1=x^2-26x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-27x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-17x-10x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left(x-17\right)\left(x-10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left[{}\begin{matrix}x=17\\x=10\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=10\) (tm)
Vậy...
Ta có: - 2 x 2 + 6x = 0 ⇔ x(6 - 2 x) = 0
⇔ x = 0 hoặc 6 - 2 x = 0 ⇔ x = 0 hoặc x = 3 2
Vậy phương trình có hai nghiệm x 1 = 0, x 2 = 3 2
x=-2 và 1
x = 1 và x = -2 nha bạn