Cho 4a2+b2=5ab và 2a>b>0.Tính \(P=\frac{ab}{4a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>4a^2-5ab+b^2=0
=>(a-b)(4a-b)=0
=>a=b hoặc b=4a(loại)
=>P=b^2/3b^2=1/3
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
Ta có : \(4a^2+b^2=5ab\Leftrightarrow4a^2-5ab+b^2=0\Leftrightarrow4a^2-4ab-ab+b^2=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)(1)
Ta thấy \(2a>b>0\left(gt\right)\) nên \(4a>b>0\Rightarrow4a-b>0\)
Từ đó để (1) xảy ra \(\Leftrightarrow a-b=0\Leftrightarrow a=b\) Thay vào P ta được :
\(P=\frac{ab}{4a^2-b^2}=\frac{a.a}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
Vậy \(P=\frac{1}{3}\)
4a^2 + b^2=5ab
<=>4a^2 + b^2 - 5ab=0
<=>4a(a - b) - b(a - b)=0
<=> (a -b )(4a - b)=0
<=>a-b=0 ; a=b hoặc 4a - b=0 ; a=b/4(loại)
đề lúc đầu sai :v
ĐKXĐ : \(2a\ne b\)\(;\)\(2a\ne-b\)
\(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}}\)
+) Với \(a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
+) Với \(4a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a.4a}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
...
\(4a^2+b^2=5ab\)
\(4a^2-5ab+b^2=0\)
\(4a^2-4ab-ab+b^2=0\)
\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\left(a-b\right)\left(4a-b\right)=0\)
\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)
mà \(2a>b>0\)
\(\Rightarrow a=b\)
Thay a = b vào M, ta có:
\(M=\frac{b\times b}{4b^2-b^2}\)
\(=\frac{b^2}{3b^2}\)
\(=\frac{1}{3}\)
Vậy . . .
Ta có: \(4a^2+b^2-5ab=0\Leftrightarrow4a^2-4ab+b^2-ab=0\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
nên \(a=b\) hoặc \(4a=b\)
Vì \(2a>b>0\Rightarrow\frac{2a}{b}>1\), ta lấy \(a=b\)
Thay \(a=b\) vào phân thức \(\frac{ab}{4a^2-4b^2}\), ta được:
\(A=\frac{1}{3}\)
ta có\(4a^2+b^2=5ab\)
\(=4a^2+b ^2-4ab-ab=0\)
\(=\left(2a-b\right)^2-ab=0\)
\(=\left(2a-b\right)^2=ab\)
thay (2a-b)2 = ab vào P ta được
\(P=\frac{\left(2a-b\right)^2}{\left(2a-b\right)\left(2a+b\right)}=\frac{2a-b}{2a+b}\)