Cho tam giác ABC, có AH vuông góc với BC tại H. Chứng minh rằng: a)AH<1/2(AB + AC); b) Kẻ BK vuông góc AC tại K, CL vuông góc với AB tại L. Chứng minh: AH + BK + CL < AB + BC + CA.
đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>AB=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)
Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)
Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)
\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
mà \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔADI cân tại A
Ta có: ∠(BAH) +∠(BAD) +∠(DAM) =180o(kề bù)
Mà ∠(BAD) =90o⇒∠(BAH) +∠(DAM) =90o(1)
Trong tam giác vuông AMD, ta có:
∠(AMD) =90o⇒∠(DAM) +∠(ADM) =90o(2)
Từ (1) và (2) suy ra: ∠(BAH) =∠(ADM)
Xét hai tam giác vuông AMD và BHA, ta có:
∠(BAH) =∠(ADM)
AB = AD (gt)
Suy ra: ΔAMD= ΔBHA(cạnh huyền, góc nhọn)
Vậy: AH = DM (hai cạnh tương ứng) (3)
∆AHB vuông tại H
⇒∠BAH + ∠ABH = ∠BAH + ∠ABC = 90⁰ (1)
∆ABC vuông tại A
⇒ ∠ABC + ∠ACB = 90⁰ (2)
Từ (1) và (2) ⇒ ∠BAH = ∠ACB
Hay ∠BAH = ∠C
giúp vs