K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

x=4

=>x+1=5

A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1

  =x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1

  =x^6-x-1

  =4^6-4-1

  =4091

10 tháng 9 2021

\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)

\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)

26 tháng 8 2023

Thay x = 4 vào A ta được:

5.4⁵ - 5.4⁴ + 5.4³ - 5.4² + 5.4 - 1

= 5.1024 - 5.256 + 5.64 - 5.16 + 5.4 - 1

= 5120 - 1280 + 320 - 80 + 20 - 1

= 4099

26 tháng 8 2023

Kq = 4099 nha

16 tháng 3 2022

\(A=3x^5-3x^4+5x^3-x^2+5x+2\)

\(\text{Thay x=-1 vào biểu thức A,ta được:}\)

\(A=3.\left(-1\right)^5-3.\left(-1\right)^4+5.\left(-1\right)^3-\left(-1\right)^2+5.\left(-1\right)+2\)

\(A=3.\left(-1\right)-3.1+5.\left(-1\right)-1+5.\left(-1\right)+2\)

\(A=\left(-3\right)-3+\left(-5\right)-1+\left(-5\right)+2\)

\(A=\left(-6\right)+\left(-5\right)-1+\left(-5\right)+2\)

\(A=\left(-11\right)-1+\left(-5\right)+2\)

\(A=\left(-12\right)+\left(-5\right)+2\)

\(A=\left(-17\right)+2=-15\)

16 tháng 3 2022

Thay x=-1 vào A ta có:
A= 3x5-3x4+5x3-x2+5x+2

   = 3.(-1)5-3.(-1)4+5.(-1)3-(-1)2+5.(-1)+2

    = 3.(-1)-3.1+5.(-1)-1+(-5)+2

    = -3-3-5-1-5+2

    =-15

12 tháng 12 2020

a) Ta có: \(B=\dfrac{x^2}{5x+25}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)

\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)

\(=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10\left(x+5\right)^2}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+10x^2+100x+250+250+25x}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+10x^2+125x+500}{5x\left(x+5\right)}\)

\(=\dfrac{x^3+5x^2+5x^2+25x+100x+500}{5x\left(x+5\right)}\)

\(=\dfrac{x^2\left(x+5\right)+5x\left(x+5\right)+100\left(x+5\right)}{5x\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x^2+5x+100\right)}{5x\left(x+5\right)}\)

\(=\dfrac{x^2+5x+100}{5x}\)

b) Thay x=-2 vào biểu thức \(B=\dfrac{x^2+5x+100}{5x}\), ta được:

\(B=\dfrac{\left(-2\right)^2+5\cdot\left(-2\right)+100}{-5\cdot2}=\dfrac{4+100-10}{-10}=\dfrac{94}{-10}=-\dfrac{94}{10}=\dfrac{-47}{5}\)

Vậy: Khi x=-2 thì \(B=-\dfrac{47}{5}\)

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

13 tháng 11 2019

`a,`

`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`

`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`

`P(x)=x^4+5x^3-x^2-x+1`

`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`

`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`

`Q(x)=x^4+2x^3-2x^2-3x+2`

`b,`

`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`

`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`

`P(x)-Q(x)=3x^3+x^2+2x-1`