Giải phương trình nghiệm nguyên x^3 = 3^y+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
Ta có :
\(2^x.3^y-1\equiv5\left(mod6\right)\)
\(7^z\equiv1\left(mod6\right)\)
Suy ra Phương trình trên vô nghiệm
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
7z = 2x . 3y - 1 (*)
Vì x, y nguyên dương nên 2x . 3y \(⋮\) 3 \(\Rightarrow\) 2x . 3y - 1 \(\equiv\) 2 (mod 3) (1)
Ta có: 7x \(\equiv\) 1x (mod 3) \(\equiv\) 1 (mod 3) (2)
Từ (*), (1), (2) \(\Rightarrow\) Phương trình vô nghiệm
Lời giải:
Vì $x^3-7$ nguyên nên $3^y$ nguyên kéo theo $y$ là số nguyên không âm.
Một số lập phương khi chia cho $9$ dư $0,1,8$
$\Rightarrow x^3\equiv 0,1,8\pmod 9$
$\Rightarrow 3^y=x^3-7\equiv -7, -6, 1\pmod 9$
Nếu $y\geq 2$ thì điều này không thỏa mãn nên $y=0,1$
Thay $y=0$ thì $x=2$
Thay $y=1$ thì $x=\sqrt[3]{10}$ (loại)