K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

`Answer:`

`a^2.(b-c)+b^2.(c-a)+c^2.(a-b)`

`=a^2.(b-c)+b^2[(c-b)-(a-b)]+c^2.(a-b)`

`=a^2.(b-c)+b^2.(c-b)+b^2.(a-b)+c^2.(a-b)`

`=(b-c)(a^2-b^2)-(a-b)(b^2-c^2)`

`=(b-c)(a-b)(a+b)-(a-b)(b-c)(b+c)`

`=(a-b)(b-c)(a+b-b-c)`

`=(a-b)(b-c)(a-c)`

\(a^2.\left(b-c\right)+b^2,\left(c-a\right)+c^2.\left(a-b\right)\)

\(=a^2.\left(b-c\right)-b^2.\left(a-c\right)+c^2.\left(a-b\right)\)

\(=a^2.\left(b-c\right)-b^2.\left[\left(a-b\right)+\left(b-c\right)\right]+c^2.\left(a-b\right)\)

\(=a^2.\left(b-c\right)-b^2.\left(a-b\right)-b^2.\left(b-c\right)+c^2.\left(a-b\right)\)

\(=\left(b-c\right).\left(a^2-b^2\right)+\left(a-b\right).\left(c^2-b^2\right)\)

\(=\left(b-c\right).\left(a-b\right).\left(a+b\right)-\left(b-c\right).\left(b+c\right).\left(a-b\right)\)

\(=\left(b-c\right).\left(a-b\right).\left(a+b-b-c\right)\)

\(=\left(b-c\right).\left(a-b\right).\left(a-c\right)\)

28 tháng 9 2018

       \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Chúc bạn học tốt.

18 tháng 8 2016

→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)

(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)

↔(a-c)(a2-b2)-(c2-a2)(b-a)

↔(a-c)((a2-b2-(a+c)(b-a))

↔(a-c)(a-b)(a+b+b-a)

↔2b(a-c)(a-b)

7 tháng 8 2016

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)

\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)

\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)

\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

7 tháng 8 2016

chỗ cuối phải là c^2-a^2 nha mọi người