Cho góc tù $\widehat{AOB}$. Trong $\widehat{AOB}$ vẽ các tia $OC \perp OA$ và $OD \perp OB$.
a) Chứng minh $\widehat{AOD}=\widehat{BOC}$.
b) Chứng minh $\widehat{AOB}+\widehat{COD}=180^{\circ}$.
c) Gọi $O x, O y$ theo thứ tự là tia phân giác của các góc $\widehat{AOD}$ và $\widehat{BOC}$. Chứng minh $Ox \perp Oy$.
Vì các tia ��OC và ��OD ở trong góc ���^AOB nên:
���^=���^−���^=90∘−���^AOD=AOC−COD=90∘−COD (1)
���^=���^−���^=90∘−���^BOC=BOD−COD=90∘−COD (2)
Từ (1) và (2), suy ra: ���^=���^AOD=BOC.
b) Ta có
���^+���^=(���^+���^)+���^=���^+���^+���^=���^+���^=90∘+90∘=180∘AOB+COD=(AOC+BOC)+COD=AOC+BOC+COD=AOC+BOD=90∘+90∘=180∘
c) Từ giả thiết, ta có: ���^=2⋅���^AOD=2⋅xOD.
Mà ���^=���^+���^+���^=2⋅���^+���^=���^+���^=���^=90∘xOy=xOD+DOC+COy=2⋅xOD+DOC=AOD+DOC=AOC=90∘.
Vậy ��⊥��Ox⊥Oy.