cho a,b,c>0 và a.b.c=1. tìm GTNN của
P=(a+1).(b+1).(c+1)
NHỚ GIẢI THÍCH CHO DỄ HIỂU ĐỪNG CÓ (times,left,sqrt,...)NHÉ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy , ta có :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi a = b = c = 1
Vậy Min P = 8 <=> a = b = c = 1
Ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(=\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{c+a+b}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
Ta có: \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
\(B=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{\left(a+b\right).\left(a+c\right).\left(b+c\right)}{a.c.b}\)
\(B=\frac{a+b}{c}.\frac{a+c}{b}.\frac{b+c}{a}=2.2.2=8\)
Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\)
<=> \(P\ge8\sqrt{abc}=8\times1=8\)
Vậy P đạt GTNN tại P=8 <=> a= b=c=1
Nhận xét: a;b;c >0 nên theo BĐT Cô - si, ta có:
$a+1\ge2\sqrt{a}$
$b+1\ge2\sqrt{b}$$c+1\ge2\sqrt{c}$=> $\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}$<=> $P\ge8\sqrt{abc}=8\times1=8$Vậy P đạt GTNN tại P=8 <=> a= b=c=1
\(không\) \(dùng\) \(bđt\) \(làm\) \(sao\) \(ra\) \(được\) ??
\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}.\sqrt{\left(1+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(bunhiacopki\right)\)
\(tương-tự:\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\)
\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\)
\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)
\(bđt:cosi\Rightarrow16a+\dfrac{4}{a}\ge2\sqrt{16a.\dfrac{4}{a}}=2\sqrt{16.4}=16\)
\(tương-tự\Rightarrow16b+\dfrac{4}{b}\ge16;16c+\dfrac{4}{c}\ge16\)
\(có:a+b+c\le\dfrac{3}{2}\Rightarrow15\left(a+b+c\right)\le\dfrac{45}{2}\)
\(\Rightarrow-15\left(a+b+c\right)\ge-\dfrac{45}{2}\)
\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)
\(dấu"="xayra\Leftrightarrow a=b=c=\dfrac{1}{2}\)
các bước ban đầu dùng bunhia chọn được 1+4^2 là do dự đoán được trước điểm rơi tại a=b=c=1/2 thôi bạn,cả bước tách dùng cosi cũng dự đoán dc điểm rơi =1/2 nên tách đc thôi
Tại sao lại k được dùng nhỉ? Trông khi dùng thì bài toán sẽ dễ giải quyết hơn
Áp dụng Bunhiacopxki:
\(\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(\dfrac{1}{4}+4\right)}\ge\dfrac{a}{2}+\dfrac{2}{b}\)
\(\Rightarrow\sqrt{a^2+\dfrac{1}{b^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{a}{2}+\dfrac{2}{b}\right)\)
Do đó:
\(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
\(\Rightarrow Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+\dfrac{18}{a+b+c}\right]\)
Áp dụng Cô-si:
\(\dfrac{a+b+c}{2}+\dfrac{9}{8\left(a+b+c\right)}\ge\dfrac{3}{2}\)
Do đó:
\(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8\left(a+b+c\right)}\right]\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8.\dfrac{3}{2}}\right]=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Ta có \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}=1+\dfrac{a+b+1}{ab}=1+\dfrac{1+1}{ab}=1+\dfrac{2}{ab}\)
Áp dụng bđt cosi ta có
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow ab\le\dfrac{1}{4}\Leftrightarrow\dfrac{2}{ab}\ge8\Leftrightarrow1+\dfrac{2}{ab}\ge9\Leftrightarrow A\ge9\)
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow\)\(a=b=0,5\)
Vậy GTNN của A là 9 và xảy ra khi a=b=0,5
\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}\)
\(A=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}\)
Mà a+b=1
nên \(A=1+\dfrac{1}{ab}+\dfrac{1}{ab}=1+\dfrac{2}{ab}\)
Ta có:
a+b=1
Áp dụng bđt Cosi
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\)
\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\dfrac{1}{4}\)
Ta có:
\(A=1+\dfrac{2}{ab}\ge1+\dfrac{\dfrac{2}{1}}{4}=1+8=9\)
Dấu bằng xảy ra khi \(\) \(\left\{{}\begin{matrix}a+b=1\\a=b\end{matrix}\right.\)
\(\Rightarrow a=b=\dfrac{1}{2}\)
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi