K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x = 4; -4

16 tháng 5 2016

Ta có: A=\(\frac{1-2x}{x+3}\)có giá trị nguyên khi và chỉ khi:1-2x chia hết cho x+3

Khi và chỉ khi: 1-2x+6-6 chia hết cho x+3

Khi và chỉ khi: 1+6-2.(x+3) chi hết cho x+3

Khi và chỉ khi: 7 chia hết cho x+3

Suy ra : x+3 thuộc -1;-7;7;1

Suy ra : x thuộc -4;-2;-10;4

Nếu thấy đúng thì nha

4 tháng 7 2015

a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)

A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)

đến đây lập bảng xét giá trị nha

b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)

bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu

16 tháng 5 2020

a)để A là phân số => x khác 1/2

b) Để A\(\in\)

=> \(2x+5⋮2x-1\)

ta có : 2x-1\(⋮\)2x-1

=>(2x+5)-(2x-1)\(⋮\)2x-1

=>6\(⋮\)2x-1

=> 2x-1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}

ta có bảng :

2x-11-12-23-36-6
x10\(\frac{3}{2}\)\(\frac{-1}{2}\)2-1\(\frac{7}{2}\)\(-\frac{5}{2}\)

Mà A \(\in\)Z

Vậy x\(\in\){\(\pm\)1;0;2}

c) ta có :A= \(\frac{2x-5}{2x-1}=\frac{2x-1-4}{2x-1}=\frac{2x-1}{2x-1}-\frac{4}{2x-1}=1-\frac{4}{2x-1}\)

để A lớn nhất

=>\(1-\frac{4}{2x-1}\)lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

12 tháng 4 2021

a)để A là phân số => x khác 1/2

b) Để A∈∈

=> 2x+5⋮2x−12x+5⋮2x−1

ta có : 2x-1⋮⋮2x-1

=>(2x+5)-(2x-1)⋮⋮2x-1

=>6⋮⋮2x-1

=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}

ta có bảng :

2x-11-12-23-36-6
x103232−12−122-17272−52−52

Mà A ∈∈Z

Vậy x∈∈{±±1;0;2}

c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1

để A lớn nhất

=>1−42x−11−42x−1lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

20 tháng 12 2016

a) Biểu thức A xác định khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Leftrightarrow}\)\(\begin{cases}x\ne1\\x\ne\pm1\end{cases}\)(bạn thông cảm chỗ này mình ko viết được ngoặc nhọn)

Vậy biểu thức A xác định khi \(x\ne\pm1\)

b)\(A=\frac{2x}{x+1}+\frac{1+2x}{x^2-1}=\frac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{1+2x}{x^2-1}=\frac{2x^2-2x}{x^2-1}+\frac{1+2x}{x^2-1}\)

\(=\frac{2x^2+1}{x^2-1}=\frac{2x^2-2+3}{x^2-1}=\frac{2\left(x^2-1\right)+3}{x^2-1}=\frac{2\left(x^2-1\right)}{x^2-1}+\frac{3}{x^2-1}=2+\frac{3}{x^2-1}\)

c) A nguyên khi và chỉ khi  \(\frac{3}{x^2-1}\) nguyên 

<=>3 chia hết cho x2-1

<=>\(x^2-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

<=>\(x^2\in\left\{-2;0;2;4\right\}\)

Vì \(x^2\ge0\Rightarrow x^2\in\left\{0;2;4\right\}\)<=>\(x\in\left\{-2;0;\sqrt{2};2\right\}\)

Vì \(x\in Z\Rightarrow x\in\left\{-2;0;2\right\}\)

Vậy A nguyên khi \(x\in\left\{-2;0;2\right\}\)

20 tháng 12 2016

a)A xác khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Rightarrow x\ne\left\{-1,1\right\}}\)

b) \(A=\frac{2x}{x+1}+\frac{1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x-1\right)+1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x^2+1}{x^2-1}=2+\frac{3}{\left(x^2\right)-1}\)

c)x^2-1=U(3)={-3,-1,1,3}

x^2={-2,0,2,4}

x={-2,0,2}

26 tháng 12 2021

\(a,\dfrac{1}{x}=\dfrac{1}{6}+3y\Leftrightarrow6=x+18xy\Leftrightarrow x\left(18y+1\right)=6\)

Mà \(x,y\in Z\)

\(x\)-6-3-2-11236
\(18y+1\)-1-2-3-66321
\(y\)loạiloạiloạiloạiloạiloạiloại

loại

Vậy ko có x,y nguyên tm

\(b,A=\dfrac{2\left(x+1\right)-3}{x+1}=2-\dfrac{3}{x+1}\in Z\\ \Leftrightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-4;-2;0;2\right\}\)