cho tam giác ABC cân tại A(cạnh đáy<cạnh bên), Đường trung trực AC giao BC tại M, N thuộc tia đối AM sao cho AN=BM
P/S: VUI LÒNG CHỈ CHO CÁCH VẼ HÌNH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Xét tam giác ABD và tam giác ACE có:
AB = AC (do tam giác ABC cân)
góc ABC = góc ACB (do tam giác ABC cân)
BD = CE (GT)
Vậy tam giác ABD = tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
Vì \(\Delta ABC\) cân tại A \(\Rightarrow AH\) là đường cao đồng thời là đường trung tuyến của BC \(\Rightarrow HB=HC=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot24=12cm\)
Áp dụng định lí Pytago vào \(\Delta AHB\) vuông tại H có :
\(HB^2+AH^2=AB^2\) \(\Rightarrow AH^2=AB^2-HB^2=37^2-12^2=1369-144=1225=35^2\Rightarrow AH=35cm\)
Ta có: ΔABC cân tại A(gt)
mà AH là đường cao ứng với cạnh đáy BC(Gt)
nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
⇔H là trung điểm của BC
⇔\(HB=\dfrac{BC}{2}=\dfrac{24}{2}=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=37^2-12^2=1225\)
\(\Leftrightarrow AH=\sqrt{1225}=35\left(cm\right)\)
Vậy: AH=35cm
Bài làm
VÌ chu vi tam giác ABC = AB + BC + CA = 16 cm
Mà Tam giác ABC cân tại A
=> AB = AC
Xét tam giác ABC có:
AB = AC = \(\frac{16-4}{2}\)= \(\frac{12}{2}\)= \(6\)
=> AB = AC > BC
Vì AB đối diện với \(\widehat{C}\)
BC đối diện với \(\widehat{A}\)
AC đối diện với \(\widehat{B}\)
Mà AB = AC > BC
=> \(\widehat{C}=\widehat{B}>\widehat{A}\)
Vậy \(\widehat{C}=\widehat{B}>\widehat{A}\)
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{BDM}=\widehat{CEN}\)
Do đó: ΔMBD=ΔNCE
c: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AI là đường trung trực
nên AI là tia phân giác của góc BAC
Đề sai rồi bạn
đề sai ai nói giống mik thì tích cho mik nha