K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I
1 tháng 4 2022

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/

 

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

 

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

$\widehat{BAC}=\frac{1}{2}\widehat{BOC}(1)$

$\widehat{BAC}=\frac{1}{2}(\text{sđc(BC)}-\text{sđc(MN nhỏ)})=\frac{1}{2}(\text{sđc(MB) nhỏ}+\text{sđc(NC) nhỏ})=\frac{1}{2}(\widehat{MIB}+\widehat{NIC})(2)$

Từ $(1);(2)\Rightarrow \widehat{MIB}+\widehat{NIC}=90^0$

$\Rightarrow \widehat{MIN}=90^0=\widehat{OIC}$

$\Rightarrow \widehat{MIO}=\widehat{NIC}$

$\Rightarrow \text{cung(MO)}=\text{cung(NC)}$

$\Rightarrow ONCM$ là hình thang cân (hệ quả quen thuộc)

$\Rightarrow MN=OC=R$

Ta có đpcm.

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

14 tháng 3 2021

ai đó làm giúp với

 

15 tháng 3 2022

lx

15 tháng 3 2022

lỗi