cho x+y+x=1 tính Min của \(x^2+y^2+z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt svacxo :
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy \(Min_S=\frac{1}{2}\)khi \(x=y=z=\frac{1}{3}\)
Bài làm:
Áp dụng bất đẳng thức Svac-xơ ta có:
\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1^2}{2.1}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{y+x}\Rightarrow x=y=z=1\)
Vậy Min(S)=1 khi \(x=y=z=1\)
Học tốt!!!!
\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)
\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)
\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Ta có:
+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)
+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)
\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)
Bài này thì chắc cô si ngược dấu thôi:v
\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)
\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)
\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
P/s: check xem có ngược dấu chỗ nào ko:v
ta có:
\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)
\(\Rightarrow F\ge\sqrt{3}\)
Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)
cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ
Lời giải:
Áp dụng BĐT Cô-si:
\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)
\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)
Áp dụng BĐT Cô-si:
\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)
\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)
\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)
Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$
đặt A=x2+y2+z2
vậy Amin=\(\frac{1}{3}\) khi x=y=\(\frac{1}{3}\)
Áp dụng BĐT Bunhiacopxki với 2 dãy số x;y;z và 1;1;1. Ta có:
\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x\times1+y\times1+z\times1\right)^2\)
<=> \(3\left(x^2+y^2+z^2\right)\ge1^2\)
<=> \(x^2+y^2+z^2\ge\frac{1}{3}\)
Vậy GTNN của x2+y2+z2 là \(\frac{1}{3}\) <=> \(\frac{x}{1}=\frac{y}{1}=\frac{z}{1}<=>x=y=z=\frac{1}{3}\)