1 số tự nhiên lẻ có 2 chữ số và chia hết cho 5 .hiệu số đó và chữ số hàng chục của nó bằng 86 tìm số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Gọi x là chữ số hàng chục. Điều kiện: x ∈ N*, 0 < x ≤ 9.
Số tự nhiên lẻ có hai chữ số và chia hết cho 5 có dạng: *5 = 10x + 5
Vì hiệu của số đó và chữ số hàng chục bằng 86 nên ta có phương trình:
(10x + 5) – x = 86
⇔10x + 5 – x = 86
⇔9x = 81
⇔x = 9 (thỏa mãn)
Vậy số cần tìm là 9 + 86 = 95
Gọi x là chữ số hàng chục. Điều kiện: x ∈N*, 0 < x ≤ 9.
Số tự nhiên lẻ có hai chữ số và chia hết cho 5 có dạng: x5 = 10x + 5
Vì hiệu của số đó và chữ số hàng chục bằng 68 nên ta có phương trình:
(10x + 5) – x = 68
⇔ 10x + 5 – x = 68
⇔ 10x – x = 68 – 5
⇔ 9x = 63
⇔ x = 7 (thỏa mãn)
Vậy số cần tìm là 7 + 68 = 75.
Vì đề bài cho một số tự nhiên lẻ có 2 chữ số và chia hết cho 5 nên:
=> chữ số hàng đơn vị là 5
Gọi x là chữ số hàng chục (0<x<10; x là số nguyên)
Chữ số hàng đơn vị là : 5
Vì hiệu của số đó và chữ số hàng chục của nó bằng 68 nên ta có PT:
10x + 5 - x = 68
<=> 9x = 63
<=> \(\dfrac{9x}{9}=\dfrac{63}{9}\)
<=> x =7 (thỏa mãn )
vậy số đó là 75
Ta có : Số \(⋮\)5 có tận cùng là 0 hoặc 5.
mà số cần tìm là 1 số lẻ => số đó có chữ số cuối là 5.
Gọi số cần tìm là : d
Ta có : d5 - d = 68
d5 75
- \(\rightarrow\)-
d 5
68 68
Ta thấy d = 7
Vậy chữ số cần tìm là 7.
Số chia hết cho 5 là các số có tận cùng là 5 và 0
Đề bài nói đó là số lẻ => số đó phải có tận cùng là 5.
Gọi chữ số hàng chục là a.
Ta có: a5 - a = 68
Làm theo kiểu lớp 5 đặt tính tìm số.
=> a = 7
Vậy số cần tìm là 75
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
Gọi số cần tìm là ab do ab lẻ và chia hết cho 5 nên b=5 => ab = a5
Theo đề bài ta có ab - a=86 <=> a5 -a = 86 => 10xa +5 -a = 86 => a = 9
=> ab = 95